Publications

Export 9 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N [O] P Q R S T U V W X Y Z   [Show ALL]
O
Day, JMD, Peters BJ, Janney PE.  2014.  Oxygen isotope systematics of South African olivine melilitites and implications for HIMU mantle reservoirs. Lithos. 202-203:76-84.   10.1016/j.lithos.2014.05.009   Abstract

Oxygen isotopes are useful tracers of silicate melt generation processes because of the relatively constant abundance of oxygen in silicate reservoirs and the large isotopic fractionation that can occur between 18O and 16O during low (< 350 °C) and high (> 350 °C) temperature alteration processes at Earth's surface. Studies of oceanic island basalts (OIB) have demonstrated the important role of assimilation of hydrothermal altered crust on 18O/16O ratios, as well as evidence that some OIB mantle sources contain recycled oceanic or continental crust and lithosphere based on correlations between oxygen and radiogenic isotopes. To further investigate how oxygen isotope signatures may be used as tracers in intraplate volcanic rocks, we report olivine compositions from South African olivine melilitites. Olivine melilitites are considered to be related to Group 1 kimberlites and form from asthenospheric melting beneath mature oceanic islands or under off-craton continental lithosphere. South African olivine melilitites also exhibit radiogenic isotopic signatures similar to high-μ (HIMU; high-238U/204Pb) OIB, suggesting sources containing subducted oceanic lithosphere. Olivine from South African melilitites has trace element compositions that are consistent with a magmatic origin from a HIMU-type mantle melt and have a remarkably restricted range in primary 18O/16O ratios (δ18O = 4.99–5.26‰; Average = 5.14 ± 0.17‰, 2σ) that are within the mantle olivine range (δ18O = 5.2 ± 0.3‰). These compositions indicate that South African olivine melilitites require a HIMU mantle source with the oxygen isotope characteristics of ambient peridotite mantle and can be explain through either: (1) intra-mantle differentiation processes that fractionate U(and Th) from Pb, but not 18O/16O ratios, or (2) a dominantly peridotitic source with HIMU-like trace-element and radiogenic isotope characteristics inherited from equilibration and remixing of ancient recycled oceanic lithosphere. In contrast, some HIMU ocean island basalts require mantle sources with low-δ18O, indicating that they originate from distinct recycled mantle lithologies (e.g., pyroxenite/eclogite).

Day, JMD, Macpherson CG, Lowry D, Pearson DG.  2012.  Oxygen isotope heterogeneity of the mantle beneath the Canary Islands: a discussion of the paper of Gurenko et al. Contributions to Mineralogy and Petrology. 164:177-183.   10.1007/s00410-012-0755-3   AbstractWebsite

Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) report laser-assisted fluorination (LF) and secondary ionization mass spectrometry (SIMS) O-18/O-16 datasets for olivine grains from the Canary Islands of Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro. As with prior studies of oxygen isotopes in Canary Island lavas (e.g. Thirlwall et al. Chem Geol 135:233-262, 1997; Day et al. Geology 37:555-558, 2009, Geochim Cosmochim Acta 74:6565-6589, 2010), these authors find variations in delta O-18(ol) (similar to 4.6-6.0 aEuro degrees) beyond that measured for mantle peridotite olivine (Mattey et al. Earth Planet Sci Lett 128:231-241, 1994) and interpret this variation to reflect contributions from pyroxenite-peridotite mantle sources. Furthermore, Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) speculate that delta O-18(ol) values for La Palma olivine grains measured by LF (Day et al. Geology 37:555-558, 2009, Geochim Cosmochim Acta 74:6565-6589, 2010) may be biased to low values due to the presence of altered silicate, possibly serpentine. The range in delta O-18(ol) values for Canary Island lavas are of importance for constraining their origin. Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) took a subset (39 SIMS analyses from 13 grains from a single El Hierro lava; EH4) of a more extensive dataset (321 SIMS analyses from 110 grains from 16 Canary Island lavas) to suggest that delta O-18(ol) is weakly correlated (R (2) = 0.291) with the parameter used by Gurenko et al. (Earth Planet Sci Lett 277:514-524, 2009) to describe the estimated weight fraction of pyroxenite-derived melt (Xpx). With this relationship, end-member delta O-18 values for HIMU-peridotite (delta O-18 = 5.3 +/- A 0.3 aEuro degrees) and depleted pyroxenite (delta O-18 = 5.9 +/- A 0.3 aEuro degrees) were defined. Although the model proposed by Gurenko et al. (Contrib Mineral Petrol 162:349-363, 2011) implicates similar pyroxenite-peridotite mantle sources to those proposed by Day et al. (Geology 37:555-558, 2009, Geochim Cosmochim Acta 74:6565-6589, 2010) and Day and Hilton (Earth Planet Sci Lett 305:226-234, 2011), there are significant differences in the predicted delta O-18 values of end member components in the two models. In particular, Day et al. (Geochim Cosmochim Acta 74:6565-6589, 2010) proposed a mantle source for La Palma lavas with low-delta O-18 (< 5 aEuro degrees), rather than higher-delta O-18 (c.f. the HIMU-peridotite composition of Gurenko et al. in Contrib Mineral Petrol 162:349-363, 2011). Here we question the approach of using weakly correlated variations in delta O-18(ol) and the Xpx parameter to define mantle source oxygen isotope compositions, and provide examples of why this approach appears flawed. We also provide reasons why the LF datasets previously published for Canary Island lavas remain robust and discuss why LF and SIMS data may provide complementary information on oxygen isotope variations in ocean island basalts (OIB), despite unresolved small-scale uncertainties associated with both techniques.

Spicuzza, MJ, Day JMD, Taylor LA, Valley JW.  2007.  Oxygen isotope constraints on the origin and differentiation of the Moon. Earth and Planetary Science Letters. 253:254-265.   10.1016/j.epsl.2006.10.030   AbstractWebsite

We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of delta O-18 values (-0.5 to 22.9 parts per thousand) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; lambda = 0.5259 +/- 0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar oxygen isotope systematics with those of Earth. Values of Delta O-17 for Apollo 12, 15, and 17 basalts and Luna 24 soil samples average 0.01 parts per thousand and are indistinguishable from the TFL. The delta O-18 values of high- and low-Ti lunar basalts are distinct. Average whole-rock delta O-18 values for low-Ti lunar basalts from the Apollo 12 (5.72 +/- 0.06 parts per thousand) and Apollo 15 landing sites (5.65 +/- 0.12 parts per thousand) are identical within error and are markedly higher than Apollo 17 high-Ti basalts (5.46 +/- 0.11 parts per thousand). Evolved low-Ti LaPaz mare-basalt meteorite delta O-18 values (5.67 +/- 0.05 parts per thousand) are in close agreement with more primitive low-Ti Apollo 12 and 15 mare basalts. Modeling of lunar mare-basalt source composition indicates that the high- and low-Ti mare-basalt mantle reservoirs were in oxygen isotope equilibrium and that variations in delta O-18 do not result from fractional crystallization. Instead, these differences are consistent with mineralogically heterogeneous mantle sources for mare basalts, and with lunar magma ocean differentiation models that result in a thick feldspathic crust, an olivine-pyroxene-rich mantle, and late-stage ilmenite-rich zones that were convectively mixed into deeper portions of the lunar mantle. Higher average delta O-18 (WR) values of low-Ti basalts compared to terrestrial mid ocean ridge basalts (Delta=0.18 parts per thousand) suggest a possible oxygen isotopic difference between the terrestrial and lunar mantles. However, calculations of the delta O-18 of lunar mantle olivine in this study are only 0.05 parts per thousand higher than terrestrial mantle olivine. These observations may have important implications for understanding the formation of the Earth-Moon system. (c) 2006 Elsevier B.V. All rights reserved.

Liu, Y, Spicuzza MJ, Craddock PR, Day JMD, Valley JW, Dauphas N, Taylor LA.  2010.  Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions. Geochimica Et Cosmochimica Acta. 74:6249-6262.   10.1016/j.gca.2010.08.008   AbstractWebsite

Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock delta(18)O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO(2), Al(2)O(3)). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock delta(56)Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134 parts per thousand to 0.217 parts per thousand. and 0.038 parts per thousand, to 0.104 parts per thousand, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions. The delta(18)O and delta(56)Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average delta(56)Fe values of low-Ti basalts (0.073 +/- 0.018 parts per thousand), n = 8) and high-Ti basalts (0.191 +/- 0.020 parts per thousand, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine delta(18)O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock delta(18)O values for source regions, 5.57 parts per thousand for low-Ti and 5.30 parts per thousand for high-Ti mare basalt mantle source regions, are solely a function of the assumed source mineralogy. The oxygen and iron isotope compositions of lunar upper mantle can be approximated using these mantle source values. The delta(18)O and delta(56)Fe values of the lunar upper mantle are estimated to be 5.5 +/- 0.27. (2 sigma) and 0.085 +/- 0.040 parts per thousand (2 sigma), respectively. The oxygen isotope composition of lunar upper mantle is identical to the current estimate of Earth's upper mantle (5.5 0.2 parts per thousand), and the iron isotope composition of the lunar upper mantle overlaps within uncertainty of estimates for the terrestrial upper mantle (0.044 +/- 0.030 parts per thousand.). (C) 2010 Elsevier Ltd. All rights reserved.

Day, JMD, Walker RJ, James OB, Puchtel IS.  2010.  Osmium isotope and highly siderophile element systematics of the lunar crust. Earth and Planetary Science Letters. 289:595-605.   10.1016/j.epsl.2009.12.001   AbstractWebsite

Coupled (187)Os/(188)Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 +/- 0.3 pg g(-1) Os, 1.5 +/- 0.6 pg g(-1) Ir, 6.8 +/- 2.7 pg g(-1) Ru, 16 +/- 15 pg g(-1) Pt,33 +/- 30 pg g(-1) Pd and 0.29 +/- 0.10 pg g(-1) Re (similar to 0.00002 x Cl) and Re/Os ratios that were modestly elevated ((187)Re/(188)Os = 0.6 to 1.7) relative to Cl chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (similar to 0.00007 x Cl) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be <= 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re.Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a 'missing component' of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion. (C) 2009 Elsevier B.V. All rights reserved.

Day, JMD, Walker RJ, Warren JM.  2017.  Os-186-Os-187 and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochimica et Cosmochimica Acta. 200:232-254.   10.1016/j.gca.2016.12.013   Abstract

Abyssal peridotites are oceanic mantle fragments that were recently processed through ridges and represent residues of both modern and ancient melting. To constrain the nature and timing of melt depletion processes, and the composition of the mantle, we report high-precision Os isotope data for abyssal peridotites from three ocean basins, as well as for Os-rich alloys, primarily from Mesozoic ophiolites. These data are complemented by whole-rock highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), trace- and major-element abundances for the abyssal peridotites, which are from the Southwest Indian (SWIR), Central Indian (CIR), Mid-Atlantic (MAR) and Gakkel Ridges. The results reveal a limited role for melt refertilization or secondary alteration processes in modifying abyssal peridotite HSE compositions. The abyssal peridotites examined have experienced variable melt depletion (2% to >16%), which occurred >0.5 Ga ago for some samples. Abyssal peridotites typically exhibit low Pd/Ir and, combined with high-degrees of estimated total melt extraction, imply that they were relatively refractory residues prior to incorporation into their present ridge setting. Recent partial melting processes and mid-ocean ridge basalt (MORB) generation therefore played a limited role in the chemical evolution of their precursor mantle domains. The results confirm that many abyssal peridotites are not simple residues of recent MORB source melting, having a more complex and long-lived depletion history.

Peridotites from the Gakkel Ridge, SWIR, CIR and MAR indicate that the depleted MORB mantle has 186Os/188Os of 0.1198356 ±21 (2SD). The Phanerozoic Os-rich alloys yield an average 186Os/188Os within uncertainty of abyssal peridotites (0.1198361 ±20). Melt depletion trends defined between Os isotopes and melt extraction indices (e.g., Al2O3) allow an estimate of the primitive mantle (PM) composition, using only abyssal peridotites. This yields 187Os/188Os (0.1292 ±25), and 186Os/188Os of 0.1198388 ±29, both of which are within uncertainty of previous primitive mantle estimates. The 186Os/188Os composition of the PM is less radiogenic than for some plume-related lavas, with the latter requiring sources with high long-term time-integrated Pt/Os. Estimates of primitive mantle HSE concentrations using abyssal peridotites define chondritic Pd/Ir, which differs from previous supra-chondritic estimates for Pd/Ir based on peridotites from a range of tectonic settings. By contrast, estimates of PM yield non-chondritic Ru/Ir. The cause of enhanced Ru in the mantle remains enigmatic, but may reflect variable partitioning behaviour of Ru at high pressure and temperature.

Day, JMD, Walker RJ, Ash RD, Liu Y, Rumble D, Irving AJ, Goodrich CA, Tait K, McDonough WF, Taylor LA.  2012.  Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies. Geochimica Et Cosmochimica Acta. 81:94-128.   10.1016/j.gca.2011.12.017   AbstractWebsite

New major- and trace-element abundances, highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundances, and oxygen and rhenium-osmium isotope data are reported for oligoclase-rich meteorites Graves Nunataks 06128 and 06129 (GRA 06128/9), six brachinites (Brachina; Elephant Morraine 99402/7; Northwest Africa (NWA) 1500; NWA 3151; NWA 4872; NWA 4882) and three olivine-rich achondrites, which are referred to here as brachinite-like achondrites (NWA 5400; NWA 6077; Zag (b)). GRA 06128/9 represent examples of felsic and highly-sodic melt products from an asteroid that may provide a differentiation complement to brachinites and/or brachinite-like achondrites. The new data, together with our petrological observations, are consistent with derivation of GRA 06128/9, brachinites and the three brachinite-like achondrites from nominally volatile-rich and oxidised 'chondritic' precursor sources within their respective parent bodies. Furthermore, the range of Delta O-17 values (similar to 0 parts per thousand to -0.3 parts per thousand) among the meteorites indicates generation from isotopically heterogeneous sources that never completely melted, or isotopically homogenised. It is possible to generate major-and trace-element compositions similar to brachinites and the three studied brachinite-like achondrites as residues of moderate degrees (13-30%) of partial melting of primitive chondritic sources. This process was coupled with inefficient removal of silica-saturated, high Fe/Mg felsic melts with compositions similar to GRA 06128/9. Melting of the parent bodies of GRA 06128/9, brachinites and brachinite-like achondrites halted well before extensive differentiation, possibly due to the exhaustion of the short-lived radionuclide Al-26 by felsic melt segregation. This mechanism provides a potential explanation for the cessation of run-away melting in asteroids to preserve achondrites such as GRA 06128/9, brachinites, brachinite-like achondrites, acapulcoite-lodranites, ureilites and aubrites. Moderate degrees of partial melting of chondritic material and generation of Fe-Ni-S-bearing melts are generally consistent with HSE abundances that are within factors of similar to 2-10 x CI-chondrite abundances for GRA 06128/9, brachinites and the three brachinite-like achondrites. However, in detail, brachinite-like achondrites NWA 5400, NWA 6077 and Zag (b) are interpreted to have witnessed single-stage S-rich metal segregation, whereas HSE in GRA 06128/9 and brachinites have more complex heritages. The HSE compositions of GRA 06128/9 and brachinites require either: (1) multiple phases in the residue (e. g., metal and sulphide); (2) fractionation after generation of an initial melt, again involving multiple phases; (3) fractional fusion, or; (4) a parent body with non-chondritic relative HSE abundances. Petrological and geochemical observations permit genetic links (i.e., same parent body) between GRA 06128/9 and brachinites and similar formation mechanisms for brachinites and brachinite-like achondrites. (C) 2011 Elsevier Ltd. All rights reserved.

Day, JMD, Hilton DR.  2011.  Origin of (3)He/(4)He ratios in HIMU-type basalts constrained from Canary Island lavas. Earth and Planetary Science Letters. 305:226-234.   10.1016/j.epsl.2011.03.006   AbstractWebsite

New helium isotope and abundance measurements are reported for olivine and clinopyroxene phenocrysts from HIMU-type (high-mu=elevated (238)U/(204)Pb) lavas and xenoliths spanning the stratigraphies of El Hierro and La Palma, Canary Islands. Some pyroxene phenocrysts have suffered post-eruptive modification, either by less than 1% assimilation of crustal-derived He, or by closed-system ageing of He. Olivine phenocrysts record mantle source (3)He/(4)He compositions, with the average (3)He/(4)He for La Palma olivine (7.6 +/- 0.8R(A), where R(A) is the atmospheric (3)He/(4)He ratio of 1.38 x 10(-6)) being within uncertainty of those for El Hierro (7.7 +/- 0.3R(A)), and the canonical mid-ocean ridge basalt range (MORB: 8 +/- 1R(A)). The new helium isotope data for El Hierro and La Palma show no distinct correlations with whole-rock (87)Sr/(86)Sr, (143)Nd/(144)Nd, (187)Os/(188)Os, or Pb isotopes, but (3)He/(4)He ratios for La Palma lavas correlate with (18)O/(16)O measured for the same phenocryst populations. Despite limited (3)He/(4)He variations for El Hierro and La Palma, their He-O isotope systematics are consistent with derivation from mantle sources containing distinct recycled oceanic basaltic crust (El Hierro) and gabbroic lithosphere (La Palma) components that have mixed with depleted mantle, and a high-(3)He/(4)He component (>9.7R(A)) in the case of La Palma. The new data are consistent with models involving generation of compositionally and lithologically (e.g., pyroxenite, eclogite, peridotite) heterogeneous mantle sources containing recycled oceanic crust and lithosphere entrained within upwelling high-(3)He/(4)He mantle that has been severely diluted by interaction with depleted mantle. We propose that the noble gas systematics of HIMU-type lavas and ocean island basalts (OIB) in general, are most simply interpreted as being controlled by the most gas-rich reservoir involved in mixing to generate their mantle sources. In this scenario, HIMU and enriched mantle (EM) sources are dominated by depleted mantle, or high-(3)He/(4)He mantle, because recycled crust and lithosphere have low He concentrations. Consequently, high-(3)He/(4)He OIB would predominantly reflect derivation from a less depleted mantle source with sub-equal to higher He contents than depleted mantle. The available coupled He-O isotope systematics measured for OIB lavas are consistent with this hypothesis. (C) 2011 Elsevier B.V. All rights reserved.

Day, JMD, Taylor LA.  2007.  On the structure of mare basalt lava flows from textural analysis of the LaPaz Icefield and Northwest Africa 032 lunar meteorites. Meteoritics & Planetary Science. 42:3-17. AbstractWebsite

Quantitative textural data for Northwest Africa (NWA) 032 and the LaPaz (LAP) mare basalt meteorites (LAP 02205, LAP 02224, LAP 02226, and LAP 02436) provide constraints on their crystallization and mineral growth histories. In conjunction with whole-rock and mineral chemistry, textural analysis provides powerful evidence for meteorite pairing. Petrographic observations and crystal size distribution (CSD) measurements of NWA 032 indicate a mixed population of slowly cooled phenocrysts and faster cooled matrix. LaPaz basalt crystal populations are consistent with a single phase of nucleation and growth. Spatial distribution patterns (SDP) of minerals in the meteorites highlight the importance of clumping and formation of clustered crystal frameworks in their melts, succeeded by continued nucleation and growth of crystals. This process resulted in increasingly poor sorting, during competition for growth, as the melt crystallized. Based on CSD and SDP data, we suggest a potential lava flow geometry model to explain the different crystal populations for NWA 032 and the LaPaz basalts. This model involves crystallization of early formed phenocrysts at hypabyssal depths in the lunar crust, followed by eruption and flow differentiation on the lunar surface. Lava flow differentiation would allow for formation of a cumulate base and facilitate variable cooling within the stratigraphy, explaining the varied textures and modal mineralogies of mare basalt meteorites. The model may also provide insight into the relative relationships of some Apollo mare basalt suites, shallow-level crystal fractionation processes, and the nature of mare basalt volcanism over lunar history.