Publications

Export 5 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
L
Schnare, DW, Day JMD, Norman MD, Liu Y, Taylor LA.  2008.  A laser-ablation ICP-MS study of Apollo 15 low-titanium olivine-normative and quartz-normative mare basalts. Geochimica Et Cosmochimica Acta. 72:2556-2572.   10.1016/j.gca.2008.02.021   AbstractWebsite

Apollo 15 low-Ti mare basalts have traditionally been subdivided into olivine- and quartz-normative basalt types, based on their different SiO(2), FeO, and TiO(2) whole-rock compositions. Previous studies have reconciled this compositional diversity by considering the olivine- and quartz-normative basalts as originating from different lunar mantle source regions. To provide new information on the compositions of Apollo 15 low-Ti mare basalt parental magmas, we report a study of major and trace-element compositions of whole rocks, pyroxenes, and other phases in the olivine-normative basalts 15016 and 15555 and quartz-normative basalts 15475 and 15499. Results show similar rare-earth-element patterns in pyroxenes from all four basalts. The estimated equilibrium parental-melt compositions from the trace-element compositions of pyroxenes are similar for 15016, 15555 and 15499. Additionally, an independent set of trace-element distribution coefficients has been determined from measured pyroxene and mesostasis compositions in sample 15499. These data suggest that fractional crystallization may be a viable alternative to compositional differences in the mantle source to explain the similar to 25% difference in whole-rock TiO(2), and corresponding differences in SiO(2) and FeO between the Apollo 15 olivine- and quartz-normative basalts. In this model, the older (similar to 3.35 Ga) quartz-normative basalts, with lower TiO(2) experienced olivine, chromite, and Cr-ulvospinel fractionation at 'crustal levels' in magma chambers or dikes, followed by limited near-surface mineral fractionation, within the lava flows. In contrast, the younger (similar to 3.25 Ga) olivine-normative basalts experienced only limited magmatic differentiation at 'crustal-levels', but extensive near-surface mineral fractionation to produce their evolved mineral compositions. A two-stage mineral-fractionation model is consistent with textural and mineralogical observations, as well as the mineral trace-element constraints developed by this study. (C) 2008 Elsevier Ltd. All rights reserved.

Day, JMD, Walker RJ, Qin LP, Rumble D.  2012.  Late accretion as a natural consequence of planetary growth. Nature Geoscience. 5:614-617.   10.1038/ngeo1527   AbstractWebsite

Core formation should strip highly siderophile elements (HSEs) from planetary mantles according to the expected metal-silicate partitioncoefficients(1,2). However, studies of Earth(3), the Moon(4) and Mars(5) indicate mantles with HSE abundances in chondrite-relative proportions that exceed the values expected from metal-silicate partitioning. Competing hypotheses have been proposed to account for these observations, including metal-silicate partitioning at higher pressures and temperatures(6) and late accretion(7). Here we present petrological and geochemical analyses of diogenite meteorites that represent mantle and crustal materials from two or more differentiated asteroids. We find that diogenites show HSE abundances that are consistent with metal-silicate equilibration, followed by minor continued accretion. Isotope chronometry supports diogenite crystallization ages within 2-3 million years of Solar System formation, indicating that late accretion occurred earlier than postulated for Earth, the Moon and Mars. The early timing and occurrence on differentiated asteroids, as well as on the larger terrestrial planets, therefore ties late accretion to planetary growth. On asteroidal bodies, such as the diogenite parent bodies, variations in HSE compositions may reflect regional rather than global effects. In contrast, for Earth, the Moon and Mars, compositional variations in mantle materials seem to be consistent with more homogeneous distributions through prolonged melting and/or solid-state convection.

Day, JMD, Moynier F, Shearer CK.  2017.  Late-stage magmatic outgassing from a volatile-depleted Moon. Proceedings of the National Academy of Sciences. 114(35):9547-9551.   10.1073/pnas.1708236114   AbstractWebsite

The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = −13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.

O'Driscoll, B, Walker RJ, Clay PL, Day JMD, Ash RD, Daly JS.  2018.  Length-scales of chemical and isotopic heterogeneity in the mantle section of the Shetland Ophiolite Complex, Scotland. Earth and Planetary Science Letters. 488:144-154.   https://doi.org/10.1016/j.epsl.2018.02.020   Abstract

Kilometre to sub-metre scale heterogeneities have been inferred in the oceanic mantle based on sampling of both ophiolites and abyssal peridotites. The ∼492 Ma Shetland Ophiolite Complex (SOC) contains a well-preserved mantle section that is dominated by harzburgite (∼70 vol.%) previously reported to have variable major and trace element compositions, yet dominantly chondritic initial 187Os/188Os compositions. To assess the preservation of compositional heterogeneities at sub-metre length-scales in the oceanic mantle, a ∼45 m2 area of the SOC mantle section was mapped and sampled in detail. Harzburgites, dunites and a pyroxenite from this area were analysed for lithophile and highly-siderophile element (HSE) abundances, as well as for 187Os/188Os ratios. Lithophile element data for most rocks are characteristic of supra-subduction zone (SSZ) metasomatic processes. Two dunites have moderately fractionated HSE patterns and suprachondritic γOs(492 Ma) values (+5.1 and +7.5) that are also typical of ophiolitic dunites generated by SSZ melt–rock interactions. By contrast, six harzburgites and four dunites have approximately chondritic-relative abundances of Os, Ir and Ru, and γOs(492 Ma) values ranging only from −0.6 to +2.7; characteristics that imply no significant influence during SSZ processes. Two harzburgites are also characterised by significantly less radiogenic γOs(492 Ma) values (−3.5 and −4), and yield Mesoproterozoic time of Re depletion (TRD) model ages. The range of Os isotope compositions in the studied area is comparable to the range reported for a suite of samples representative of the entire SOC mantle section, and approaches the total isotopic variation of the oceanic mantle, as observed in abyssal peridotites. Mechanisms by which this heterogeneity can be formed and preserved involve inefficient and temporally distinct melt extraction events and strong localised channelling of these melts.

Magna, T, Day JMD, Mezger K, Fehr MA, Dohmen R, Aoudjehane HC, Agee CB.  2015.  Lithium isotope constraints on crust–mantle interactions and surface processes on Mars. Geochimica et Cosmochimica Acta. 162:46-65.   10.1016/j.gca.2015.04.029   Abstract

Lithium abundances and isotope compositions are reported for a suite of martian meteorites that span the range of petrological and geochemical types recognized to date for Mars. Samples include twenty-one bulk-rock enriched, intermediate and depleted shergottites, six nakhlites, two chassignites, the orthopyroxenite Allan Hills (ALH) 84001 and the polymict breccia Northwest Africa (NWA) 7034. Shergottites unaffected by terrestrial weathering exhibit a range in δ7Li from 2.1 to 6.2‰, similar to that reported for pristine terrestrial peridotites and unaltered mid-ocean ridge and ocean island basalts. Two chassignites have δ7Li values (4.0‰) intermediate to the shergottite range, and combined, these meteorites provide the most robust current constraints on δ7Li of the martian mantle. The polymict breccia NWA 7034 has the lowest δ7Li (−0.2‰) of all terrestrially unaltered martian meteorites measured to date and may represent an isotopically light surface end-member.

The new data for NWA 7034 imply that martian crustal surface materials had both a lighter Li isotope composition and elevated Li abundance compared with their associated mantle. These findings are supported by Li data for olivine-phyric shergotitte NWA 1068, a black glass phase isolated from the Tissint meteorite fall, and some nakhlites, which all show evidence for assimilation of a low-δ7Li crustal component. The range in δ7Li for nakhlites (1.8 to 5.2‰), and co-variations with chlorine abundance, suggests crustal contamination by Cl-rich brines. The differences in Li isotope composition and abundance between the martian mantle and estimated crust are not as large as the fractionations observed for terrestrial continental crust and mantle, suggesting a difference in the styles of alteration and weathering between water-dominated processes on Earth versus possibly Cl–S-rich brines on Mars. Using high-MgO shergottites (>15 wt.% MgO) it is possible to estimate the δ7Li of Bulk Silicate Mars (BSM) to be 4.2 ± 0.9‰ (2σ). This value is at the higher end of estimates for the Bulk Silicate Earth (BSE; 3.5 ± 1.0‰, 2σ), but overlaps within uncertainty.