Publications

Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
2012
Paniello, RC, Day JMD, Moynier F.  2012.  Zinc isotopic evidence for the origin of the Moon. Nature. 490:376-U104.   10.1038/nature11507   AbstractWebsite

Volatile elements have a fundamental role in the evolution of planets. But how budgets of volatiles were set in planets, and the nature and extent of volatile-depletion of planetary bodies during the earliest stages of Solar System formation remain poorly understood(1,2). The Moon is considered to be volatile-depleted and so it has been predicted that volatile loss should have fractionated stable isotopes of moderately volatile elements(3). One such element, zinc, exhibits strong isotopic fractionation during volatilization in planetary rocks(4,5), but is hardly fractionated during terrestrial igneous processes(6), making it a powerful tracer of the volatile histories of planets. Here we present high-precision zinc isotopic and abundance data which show that lunar magmatic rocks are enriched in the heavy isotopes of zinc and have lower zinc concentrations than terrestrial or Martian igneous rocks. Conversely, Earth and Mars have broadly chondritic zinc isotopic compositions. We show that these variations represent large-scale evaporation of zinc, most probably in the aftermath of the Moon-forming event, rather than small-scale evaporation processes during volcanism. Our results therefore represent evidence for volatile depletion of the Moon through evaporation, and are consistent with a giant impact origin for the Earth and Moon.

2009
Liu, Y, Floss C, Day JMD, Hill E, Taylor LA.  2009.  Petrogenesis of lunar mare basalt meteorite Miller Range 05035. Meteoritics & Planetary Science. 44:261-284. AbstractWebsite

Miller Range (MIL) 05035 is a low-Ti mare basalt that consists predominantly of pyroxene (62.3 vol%) and plagioclase (26.4 vol%). Pyroxenes are strongly shocked and complexly zoned from augite (Wo(33)) and pigeonite (Wo(17)) cores with Mg# = 50-54 to hedenbergite rims. Coexisting pyroxene core compositions reflect crystallization temperatures of 1000 to 1100 degrees C. Plagioclase has been completely converted to maskelynite with signs of recrystallization. Maskelynite is relatively uniform in composition (An(94)Ab(6)-An(91)Ab(9)), except at contacts with late-stage mesostasis areas (elevated K contents, An(82)Ab(15)Or(3)). Symplectites (intergrowth of Fe-augite, fayalite, and silica) of different textures and bulk compositions in MIL 05035 suggest formation by decomposition of Ferro-pyroxene during shock-induced heating, which is Supported by the total maskelynitization of plagioclase, melt pockets, and the presence of a relict pyroxferroite grain. Petrography and mineral chemistry imply that crystallization of MIL 05035 Occurred in the sequence of Fe-poor pyroxenes (Mg# = 50-54), followed by plagioclase and Fe-rich pyroxenes (Mg# = 20-50), and finally hedenbergite, Fe-Ti oxides, and minor late-stage phases. Petrography, bulk chemistry, mineral compositions, and the age of MIL 05035 Suggest it is possibly Source crater-paired with Asuka (A-) 881757 and Yamato (Y-) 793169, and may also be launch-paired with Meteorite Hills (MET) 01210. MIL 05035 represents an old (similar to 3.8-3.9 Ga), incompatible element-depleted low-Ti basalt that was not sampled during the Apollo or Luna missions. The light-REE depleted nature and lack of Eu anomalies For this meteorite are consistent with an origin distant from the Procellarum KREEP Terrane, and genesis from an early Cumulate mantle-source region generated by extensive differentiation of the Moon.

2008
Schnare, DW, Day JMD, Norman MD, Liu Y, Taylor LA.  2008.  A laser-ablation ICP-MS study of Apollo 15 low-titanium olivine-normative and quartz-normative mare basalts. Geochimica Et Cosmochimica Acta. 72:2556-2572.   10.1016/j.gca.2008.02.021   AbstractWebsite

Apollo 15 low-Ti mare basalts have traditionally been subdivided into olivine- and quartz-normative basalt types, based on their different SiO(2), FeO, and TiO(2) whole-rock compositions. Previous studies have reconciled this compositional diversity by considering the olivine- and quartz-normative basalts as originating from different lunar mantle source regions. To provide new information on the compositions of Apollo 15 low-Ti mare basalt parental magmas, we report a study of major and trace-element compositions of whole rocks, pyroxenes, and other phases in the olivine-normative basalts 15016 and 15555 and quartz-normative basalts 15475 and 15499. Results show similar rare-earth-element patterns in pyroxenes from all four basalts. The estimated equilibrium parental-melt compositions from the trace-element compositions of pyroxenes are similar for 15016, 15555 and 15499. Additionally, an independent set of trace-element distribution coefficients has been determined from measured pyroxene and mesostasis compositions in sample 15499. These data suggest that fractional crystallization may be a viable alternative to compositional differences in the mantle source to explain the similar to 25% difference in whole-rock TiO(2), and corresponding differences in SiO(2) and FeO between the Apollo 15 olivine- and quartz-normative basalts. In this model, the older (similar to 3.35 Ga) quartz-normative basalts, with lower TiO(2) experienced olivine, chromite, and Cr-ulvospinel fractionation at 'crustal levels' in magma chambers or dikes, followed by limited near-surface mineral fractionation, within the lava flows. In contrast, the younger (similar to 3.25 Ga) olivine-normative basalts experienced only limited magmatic differentiation at 'crustal-levels', but extensive near-surface mineral fractionation to produce their evolved mineral compositions. A two-stage mineral-fractionation model is consistent with textural and mineralogical observations, as well as the mineral trace-element constraints developed by this study. (C) 2008 Elsevier Ltd. All rights reserved.

2007
Day, JMD, Taylor LA.  2007.  On the structure of mare basalt lava flows from textural analysis of the LaPaz Icefield and Northwest Africa 032 lunar meteorites. Meteoritics & Planetary Science. 42:3-17. AbstractWebsite

Quantitative textural data for Northwest Africa (NWA) 032 and the LaPaz (LAP) mare basalt meteorites (LAP 02205, LAP 02224, LAP 02226, and LAP 02436) provide constraints on their crystallization and mineral growth histories. In conjunction with whole-rock and mineral chemistry, textural analysis provides powerful evidence for meteorite pairing. Petrographic observations and crystal size distribution (CSD) measurements of NWA 032 indicate a mixed population of slowly cooled phenocrysts and faster cooled matrix. LaPaz basalt crystal populations are consistent with a single phase of nucleation and growth. Spatial distribution patterns (SDP) of minerals in the meteorites highlight the importance of clumping and formation of clustered crystal frameworks in their melts, succeeded by continued nucleation and growth of crystals. This process resulted in increasingly poor sorting, during competition for growth, as the melt crystallized. Based on CSD and SDP data, we suggest a potential lava flow geometry model to explain the different crystal populations for NWA 032 and the LaPaz basalts. This model involves crystallization of early formed phenocrysts at hypabyssal depths in the lunar crust, followed by eruption and flow differentiation on the lunar surface. Lava flow differentiation would allow for formation of a cumulate base and facilitate variable cooling within the stratigraphy, explaining the varied textures and modal mineralogies of mare basalt meteorites. The model may also provide insight into the relative relationships of some Apollo mare basalt suites, shallow-level crystal fractionation processes, and the nature of mare basalt volcanism over lunar history.

Spicuzza, MJ, Day JMD, Taylor LA, Valley JW.  2007.  Oxygen isotope constraints on the origin and differentiation of the Moon. Earth and Planetary Science Letters. 253:254-265.   10.1016/j.epsl.2006.10.030   AbstractWebsite

We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of delta O-18 values (-0.5 to 22.9 parts per thousand) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; lambda = 0.5259 +/- 0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar oxygen isotope systematics with those of Earth. Values of Delta O-17 for Apollo 12, 15, and 17 basalts and Luna 24 soil samples average 0.01 parts per thousand and are indistinguishable from the TFL. The delta O-18 values of high- and low-Ti lunar basalts are distinct. Average whole-rock delta O-18 values for low-Ti lunar basalts from the Apollo 12 (5.72 +/- 0.06 parts per thousand) and Apollo 15 landing sites (5.65 +/- 0.12 parts per thousand) are identical within error and are markedly higher than Apollo 17 high-Ti basalts (5.46 +/- 0.11 parts per thousand). Evolved low-Ti LaPaz mare-basalt meteorite delta O-18 values (5.67 +/- 0.05 parts per thousand) are in close agreement with more primitive low-Ti Apollo 12 and 15 mare basalts. Modeling of lunar mare-basalt source composition indicates that the high- and low-Ti mare-basalt mantle reservoirs were in oxygen isotope equilibrium and that variations in delta O-18 do not result from fractional crystallization. Instead, these differences are consistent with mineralogically heterogeneous mantle sources for mare basalts, and with lunar magma ocean differentiation models that result in a thick feldspathic crust, an olivine-pyroxene-rich mantle, and late-stage ilmenite-rich zones that were convectively mixed into deeper portions of the lunar mantle. Higher average delta O-18 (WR) values of low-Ti basalts compared to terrestrial mid ocean ridge basalts (Delta=0.18 parts per thousand) suggest a possible oxygen isotopic difference between the terrestrial and lunar mantles. However, calculations of the delta O-18 of lunar mantle olivine in this study are only 0.05 parts per thousand higher than terrestrial mantle olivine. These observations may have important implications for understanding the formation of the Earth-Moon system. (c) 2006 Elsevier B.V. All rights reserved.

2006
Day, JMD, Floss C, Taylor LA, Anand M, Patchen AD.  2006.  Evolved mare basalt magmatism, high Mg/Fe feldspathic crust, chondritic impactors, and the petrogenesis of Antarctic lunar breccia meteorites Meteorite Hills 01210 and Pecora Escarpment 02007. Geochimica Et Cosmochimica Acta. 70:5957-5989.   10.1016/j.gca.2006.05.001   AbstractWebsite

Antarctic lunar meteorites Meteorite Hills 01210 and Pecora Escarpment 02007 are breccias that come from different regolith lithologies on the Moon. MET 01210 is composed predominantly of fractionated low-Ti basaltic material and is classified as an immature, predominantly basaltic glassy matrix regolith breccia. PCA 02007 is a predominantly feldspathic regolith breccia consisting of metamorphosed feldspathic, noritic, troctolitic and noritic-anorthosite clasts, agglutinate and impact-glasses, as well as a number of basaltic clasts with mare and possible non-mare affinities. The basalt clasts in MET 0 12 10 have undergone 'Fenner' trend enrichments in iron and may also have witnessed late-stage crystallization of zircon or a zirconium-rich mineral. Some of the features of MET 0 1210 are similar to other basaltic lunar breccia meteorites (e.g., Northwest Africa 773; Elephant Moraine 87521/96008; Yamato 793274/981031), but it is not paired with them. The presence of metamorphic anorthositic clasts as well as agglutinates indicates a small regolith component. Similarities with previously discovered evolved (e.g., LaPaz Icefield 02205; Northwest Africa 032) and ferroan (e.g., Asuka 881757; Yamato 793169) basaltic lunar meteorites suggest a similar mare source region for MET 01210. Despite lack of evidence for pairing, PCA 02007 shares many features with other feldspathic regolith breccias (e.g., Yamato 791197, Queen Alexandra Range 94281), including a high Mg/Fe whole-rock composition, glass spherules, agglutinate fragments and a diverse clast inventory spanning the range of ferroan anorthosite and high magnesium suite rocks. Some of the basalt fragments in this sample are fractionated and have an igneous origin. However, the majority of the basalt fragments are impact melt clasts. PCA 02007 supports previous studies of feldspathic lunar meteorites that have suggested an aluminous crust for the Moon, with compositions more similar to magnesium granulite breccias than ferroan anorthosites. A 'chondrule-like' fragment found in PCA 02007 and unlike any previously described lunar material is described and tentatively identified as the remnants of a chondritic lunar impactor. This clast is porphyritic with equant olivines that have forsterite-rich cores (Fo(> 98)), extreme normal zonation to more fayalitic rims (Fo(> 44)), and a mineral assemblage with rare earth element abundances distinct from described lunar material and more similar to chondrules found in ordinary or carbonaceous chondrites. Its discovery and description is significant for understanding the composition of lunar impactors. Previously, the main evidence for chondritic lunar impactors was from chondritic relative abundances and near chondritic ratios of highly siderophile elements in lunar impact melt breccias. However, the presence of this clast, along with two other chondritic clasts from Apollo soils 12037 and 15602, provides clues to the identity of ancient meteorite impactors on the Moon. (c) 2006 Elsevier Inc. All rights reserved.