Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Day, JMD, Taylor LA, Floss C, Patchen AD, Schnare DW, Pearson DG.  2006.  Comparative petrology, geochemistry, and petrogenesis of evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica. Geochimica Et Cosmochimica Acta. 70:1581-1600.   10.1016/j.gca.2005.11.015   AbstractWebsite

New data is presented for five evolved, low-Ti lunar mare basalt meteorites from the LaPaz Icefield, Antarctica, LAP 02205, LAP 02224, LAP 02226, LAP 02436, and LAP 03632. These basalts have nearly identical mineralogies, textures, and geochemical compositions, and are therefore considered to be paired. The LaPaz basalts contain olivine (Fo(64-2)) and pyroxene (Fs(32)Wo(8)En(60) to Fs(84-86)Wo(15)En(2-0)) crystals that record extreme chemical fractionation to Fe-enrichment at the rims, and evidence for silicate liquid immiscibility and incompatible element enrichment in the mesostasis. The basalts also contain FeNi metals with unusually high Co and Ni contents, similar to some Apollo 12 basalts, and a single-phase network of melt veins and fusion crusts. The fusion crust has similar chemical characteristics to the whole rock for the LaPaz basalts, whereas the melt veins represent localized melting of the basalt and have an endogenous origin. The crystallization conditions and evolved nature of the LaPaz basalts are consistent with fractionation of olivine and chromite from a parental liquid similar in composition to some olivine-phyric Apollo 12 and Apollo 15 basalts or lunar low-Ti pyroclastic glasses. However, the young reported ages for the LaPaz mare basalts (similar to 2.9 Ga) and their relative incompatible element enrichment compared to Apollo mare basalts and pyroclastic glasses indicate they cannot be directly related. Instead, the LaPaz mare basalts may represent fractionated melts from a magmatic system fed by similar degrees of partial melting of a mantle source similar to that of the low-Ti Apollo mare basalts or pyroclastic glasses, but which possessed greater incompatible element enrichment. Despite textural differences, the LaPaz basalts and mare basalt meteorite NWA 032 have similar ages and compositions and may originate from the same magmatic system on the Moon. (c) 2005 Elsevier Inc. All rights reserved.

E
Day, JMD, Floss C, Taylor LA, Anand M, Patchen AD.  2006.  Evolved mare basalt magmatism, high Mg/Fe feldspathic crust, chondritic impactors, and the petrogenesis of Antarctic lunar breccia meteorites Meteorite Hills 01210 and Pecora Escarpment 02007. Geochimica Et Cosmochimica Acta. 70:5957-5989.   10.1016/j.gca.2006.05.001   AbstractWebsite

Antarctic lunar meteorites Meteorite Hills 01210 and Pecora Escarpment 02007 are breccias that come from different regolith lithologies on the Moon. MET 01210 is composed predominantly of fractionated low-Ti basaltic material and is classified as an immature, predominantly basaltic glassy matrix regolith breccia. PCA 02007 is a predominantly feldspathic regolith breccia consisting of metamorphosed feldspathic, noritic, troctolitic and noritic-anorthosite clasts, agglutinate and impact-glasses, as well as a number of basaltic clasts with mare and possible non-mare affinities. The basalt clasts in MET 0 12 10 have undergone 'Fenner' trend enrichments in iron and may also have witnessed late-stage crystallization of zircon or a zirconium-rich mineral. Some of the features of MET 0 1210 are similar to other basaltic lunar breccia meteorites (e.g., Northwest Africa 773; Elephant Moraine 87521/96008; Yamato 793274/981031), but it is not paired with them. The presence of metamorphic anorthositic clasts as well as agglutinates indicates a small regolith component. Similarities with previously discovered evolved (e.g., LaPaz Icefield 02205; Northwest Africa 032) and ferroan (e.g., Asuka 881757; Yamato 793169) basaltic lunar meteorites suggest a similar mare source region for MET 01210. Despite lack of evidence for pairing, PCA 02007 shares many features with other feldspathic regolith breccias (e.g., Yamato 791197, Queen Alexandra Range 94281), including a high Mg/Fe whole-rock composition, glass spherules, agglutinate fragments and a diverse clast inventory spanning the range of ferroan anorthosite and high magnesium suite rocks. Some of the basalt fragments in this sample are fractionated and have an igneous origin. However, the majority of the basalt fragments are impact melt clasts. PCA 02007 supports previous studies of feldspathic lunar meteorites that have suggested an aluminous crust for the Moon, with compositions more similar to magnesium granulite breccias than ferroan anorthosites. A 'chondrule-like' fragment found in PCA 02007 and unlike any previously described lunar material is described and tentatively identified as the remnants of a chondritic lunar impactor. This clast is porphyritic with equant olivines that have forsterite-rich cores (Fo(> 98)), extreme normal zonation to more fayalitic rims (Fo(> 44)), and a mineral assemblage with rare earth element abundances distinct from described lunar material and more similar to chondrules found in ordinary or carbonaceous chondrites. Its discovery and description is significant for understanding the composition of lunar impactors. Previously, the main evidence for chondritic lunar impactors was from chondritic relative abundances and near chondritic ratios of highly siderophile elements in lunar impact melt breccias. However, the presence of this clast, along with two other chondritic clasts from Apollo soils 12037 and 15602, provides clues to the identity of ancient meteorite impactors on the Moon. (c) 2006 Elsevier Inc. All rights reserved.

P
Liu, Y, Floss C, Day JMD, Hill E, Taylor LA.  2009.  Petrogenesis of lunar mare basalt meteorite Miller Range 05035. Meteoritics & Planetary Science. 44:261-284. AbstractWebsite

Miller Range (MIL) 05035 is a low-Ti mare basalt that consists predominantly of pyroxene (62.3 vol%) and plagioclase (26.4 vol%). Pyroxenes are strongly shocked and complexly zoned from augite (Wo(33)) and pigeonite (Wo(17)) cores with Mg# = 50-54 to hedenbergite rims. Coexisting pyroxene core compositions reflect crystallization temperatures of 1000 to 1100 degrees C. Plagioclase has been completely converted to maskelynite with signs of recrystallization. Maskelynite is relatively uniform in composition (An(94)Ab(6)-An(91)Ab(9)), except at contacts with late-stage mesostasis areas (elevated K contents, An(82)Ab(15)Or(3)). Symplectites (intergrowth of Fe-augite, fayalite, and silica) of different textures and bulk compositions in MIL 05035 suggest formation by decomposition of Ferro-pyroxene during shock-induced heating, which is Supported by the total maskelynitization of plagioclase, melt pockets, and the presence of a relict pyroxferroite grain. Petrography and mineral chemistry imply that crystallization of MIL 05035 Occurred in the sequence of Fe-poor pyroxenes (Mg# = 50-54), followed by plagioclase and Fe-rich pyroxenes (Mg# = 20-50), and finally hedenbergite, Fe-Ti oxides, and minor late-stage phases. Petrography, bulk chemistry, mineral compositions, and the age of MIL 05035 Suggest it is possibly Source crater-paired with Asuka (A-) 881757 and Yamato (Y-) 793169, and may also be launch-paired with Meteorite Hills (MET) 01210. MIL 05035 represents an old (similar to 3.8-3.9 Ga), incompatible element-depleted low-Ti basalt that was not sampled during the Apollo or Luna missions. The light-REE depleted nature and lack of Eu anomalies For this meteorite are consistent with an origin distant from the Procellarum KREEP Terrane, and genesis from an early Cumulate mantle-source region generated by extensive differentiation of the Moon.

Day, JMD, Taylor LA, Floss C, McSween HY.  2006.  Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of nakhlites on Mars. Meteoritics & Planetary Science. 41:581-606. AbstractWebsite

Antarctic meteorite Miller Range (MIL) 03346 is a nakhlite composed of 79% clinopyroxene, similar to 1% olivine, and 20% vitrophyric intercumulus material. We have performed a petrological and geochemical study of MIL 03346, demonstrating a petrogenetic history similar to previously discovered naklilites. Quantitative textural study of MIL 03346 indicates long (> 1 x 10(1) yr) residence times for the Cumulus augite, whereas the skeletal Fe-Ti oxide, fayalite, and sulfide in the vitrophyric intercumulus matrix suggest rapid cooling, probably as a lava flow. From the relatively high forsterite contents of olivine (up to Fo(43)) compared with other nakhlites and compositions of augite cores (Wo(38-42)En(35-40)Fs(22-28)) and their hedenbergite rims, we suggest that MIL 03346 is part of the same or a similar Martian Cumulate-rich lava flow as other nakhlites. However, MIL 03346 has experienced less equilibration and faster cooling than other nakhlites discovered to date. Calculated trace element concentrations based upon modal abundances of MIL 03346 and its constituent minerals are identical to whole rock trace element abundances. Parental melts for augite have REE patterns that are approximately parallel with whole rock and intercumulus melt using experimentally defined partition coefficients. This parallelism reflects closed-system crystallization for MIL 03346, where the only significant petrogenetic process between formation of augite and eruption and emplacement of the nakhlite flow has been fractional crystallization. A model for the petrogenesis of MIL 03346 and the naklilites (Nakhla, Governador Valadares, Lafayette, Yamato-000593, Northwest Africa (NWA) 817, NWA 998) Would include: 1) partial melting and ascent of melt generated from a long-term LREE depleted mantle Source, 2) crystallization of cumulus augite (+/- olivine, +/- magnetite) in a shallow-level Martian magma chamber, 3) eruption of the crystal-laden naklilite magma onto the surface of Mars, 4) cooling, crystal settling, overgrowth, and partial equilibration to different extents within the flow, 5) secondary alteration through hydrothermal processes, possibly immediately succeeding or during emplacement of the flow. This model might apply to single-or multiple-flow models for the nakhlites. Ultimately, MIL 03346 and the other nakhlites preserve a record of magmatic processes in volcanic rocks oil Mars with analogous petrogenetic histories to pyroxene-rich terrestrial lava flows and to komatiites.