Export 4 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q [R] S T U V W X Y Z   [Show ALL]
Riches, AJV, Day JMD, Walker RJ, Simonetti A, Liu Y, Neal CR, Taylor LA.  2012.  Rhenium–osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites. Earth and Planetary Science Letters. 353:208-218.   10.1016/j.epsl.2012.08.006   Abstract

Coupled 187Os/188Os compositions and highly-siderophile-element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for eight angrite achondrite meteorites that include quenched- and slowly-cooled textural types. These data are combined with new major- and trace-element concentrations determined for bulk-rock powder fractions and constituent mineral phases, to assess angrite petrogenesis. Angrite meteorites span a wide-range of HSE abundances from <0.005 ppb Os (e.g., Northwest Africa [NWA] 1296; Angra dos Reis) to >100 ppb Os (NWA 4931). Chondritic to supra-chondritic 187Os/188Os (0.1201–0.2127) measured for Angra dos Reis and quenched-angrites correspond to inter- and intra-sample heterogeneities in Re/Os and HSE abundances. Quenched-angrites have chondritic-relative rare-earth-element (REE) abundances at 10–15×CI-chondrite, and their Os-isotope and HSE abundance variations represent mixtures of pristine uncontaminated crustal materials that experienced addition (<0.8%) of exogenous chondritic materials during or after crystallization. Slowly-cooled angrites (NWA 4590 and NWA 4801) have fractionated REE-patterns, chondritic to sub-chondritic 187Os/188Os (0.1056–0.1195), as well as low-Re/Os (0.03–0.13), Pd/Os (0.071–0.946), and relatively low-Pt/Os (0.792–2.640). Sub-chondritic 187Os/188Os compositions in NWA 4590 and NWA 4801 are unusual amongst planetary basalts, and their HSE and REE characteristics may be linked to melting of mantle sources that witnessed prior basaltic melt depletion. Angrite HSE-Yb systematics suggest that the HSE behaved moderately-incompatibly during angrite magma crystallization, implying the presence of metal in the crystallizing assemblage.

The new HSE abundance and 187Os/188Os compositions indicate that the silicate mantle of the angrite parent body(ies) (APB) had HSE abundances in chondritic-relative proportions but at variable abundances at the time of angrite crystallization. The HSE systematics of angrites are consistent with protracted post-core formation accretion of materials with chondritic-relative abundances of HSE to the APB, and these accreted materials were rapidly, yet inefficiently, mixed into angrite magma source regions early in Solar System history.

Riches, AJV, Liu Y, Day JMD, Spetsius ZV, Taylor LA.  2010.  Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia. Lithos. 120:368-378.   10.1016/j.lithos.2010.09.006   AbstractWebsite

The similar to 380 Ma Nyurbinskaya kimberlite pipe Yakutia Siberia sampled a highly-diamondiferous and unusual mantle xenolith population dominated by eclogites New in-situ major- and trace-element data for garnets previously analyzed for oxygen isotope compositions show that Group A eclogitic garnets have Mg# >68 and are LREE-depleted Group B and Group C eclogitic garnets cover a range of Mg# and are each divided into two types based on their trace-element characteristics Type B1 and Cl eclogitic garnets are dominant and are LREE-depleted Less common Type B2 and C2 garnets generally have Mg# >60 and convex-upward REE profiles Harzburgitic garnets are a minor component of the Nyurbinskaya xenolith suite and have high Mg# (similar to 84) high Cr contents (similar to 11 wt% Cr(2)O(3)) and sinusoidal REE-patterns Group A Type B1 and Cl eclogitic garnets define a broad negative correlation between Mg# and Yb abundances consistent with a shallow origin as basaltic and gabbroic portions of oceanic crust Harzburgitic Type B2 and C2 eclogitic garnets have trace-element characteristics indicative of interaction with a C-O-H-N-S-rich fluid in lithospheric environments These results provide clear evidence for the presence of subducted crustal materials in the Siberian mantle lithosphere and support models of craton formation by subduction zone stacking (C) 2010 Elsevier BV All rights reserved

Riches, AJV, Liu Y, Day JMD, Puchtel IS, III RD, McSween HY, Walker RJ, Taylor LA.  2011.  Petrology and geochemistry of Yamato 984028: A cumulate lherzolitic shergottite with affinities to Y 000027, Y 000047, and Y 000097. Polar Science. 4(4):497-514.   10.1016/j.polar.2010.04.009   Abstract

We report the petrography, mineral and whole-rock chemistry (major-, trace-, and highly-siderophile element abundances, and osmium and oxygen isotope compositions) of a newly recognized lherzolitic shergottite, Yamato (Y) 984028. Oxygen isotopes (Δ17O = 0.218‰) confirm a martian origin for this meteorite. Three texturally distinctive internal zones and a partially devitrified fusion crust occur in the polished section of Y 984028 studied here. The zones include: 1) a poikilitic region with pyroxene enclosing olivine and chromite (Zone A); 2) a non-poikilitic zone with cumulate olivine, interstitial pyroxene, maskelynite and Ti-rich chromite (Zone B) and; 3) a monomict breccia (Zone C). The pyroxene oikocryst in Zone A is chemically zoned from Wo3–7En76–71 in the core region to Wo33–36En52–49 at the rim, and encloses more Mg-rich olivine (Fo74–70) in the core, as compared with olivines (Fo69–68) located at the oikocryst rim. Constraints from Fe–Mg partitioning between crystals and melt indicate that constituent minerals are not in equilibrium with the corresponding bulk-rock composition, implying that Y 984028 represents a cumulate. The whole-rock major- and trace-element compositions, and initial 187Os/188Os value (0.1281 ± 0.0002) of Y 984028 are similar to other lherzolitic shergottites and this sample is probably launch-paired with Y 793602, Y 000027, Y 000047, and Y 000097. The Os isotopic composition and highly-siderophile element (HSE) abundances of Y 984028 and other lherzolitic shergottites are consistent with derivation from a martian mantle source that evolved with chondritic Re/Os.

Rutter, GP, Pearson DG, Phillip G, Day JMD, Ottley CJ.  2003.  The use of ICP-MS in provenancing stone artefacts: Examples from the southern Levant. Plasma Source Mass Spectrometry: applications and emerging technologies. , London: RSC Publishing   10.1039/9781847551689