Export 9 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
Paniello, RC, Day JMD, Moynier F.  2012.  Zinc isotopic evidence for the origin of the Moon. Nature. 490:376-U104.   10.1038/nature11507   AbstractWebsite

Volatile elements have a fundamental role in the evolution of planets. But how budgets of volatiles were set in planets, and the nature and extent of volatile-depletion of planetary bodies during the earliest stages of Solar System formation remain poorly understood(1,2). The Moon is considered to be volatile-depleted and so it has been predicted that volatile loss should have fractionated stable isotopes of moderately volatile elements(3). One such element, zinc, exhibits strong isotopic fractionation during volatilization in planetary rocks(4,5), but is hardly fractionated during terrestrial igneous processes(6), making it a powerful tracer of the volatile histories of planets. Here we present high-precision zinc isotopic and abundance data which show that lunar magmatic rocks are enriched in the heavy isotopes of zinc and have lower zinc concentrations than terrestrial or Martian igneous rocks. Conversely, Earth and Mars have broadly chondritic zinc isotopic compositions. We show that these variations represent large-scale evaporation of zinc, most probably in the aftermath of the Moon-forming event, rather than small-scale evaporation processes during volcanism. Our results therefore represent evidence for volatile depletion of the Moon through evaporation, and are consistent with a giant impact origin for the Earth and Moon.

Pernet-Fisher, JF, Day JMD, Howarth GH, Ryabov VV, Taylor LA.  2017.  Atmospheric outgassing and native-iron formation during carbonaceous sediment–basalt melt interactions. Earth and Planetary Science Letters. 460:201-212.   Abstract

Organic carbon-rich sediment assimilation by basaltic magmas leads to enhanced emission of greenhouse gases during continental flood basalt eruptions. A collateral effect of these interactions is the generation of low oxygen fugacities (fO2)(below the iron-wüstite [IW] buffer curve) during magmatic crystallization, resulting in the precipitation of native-iron. The occurrence of native-iron bearing terrestrial basaltic rocks are rare, having been identified at three locations: Siberia, West Greenland, and Central Germany. We report the first combined study of Re–Os isotopes, highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), and trace-element abundances for these three occurrences, in addition to host sediments at West Greenland. To quantify the amount of crustal assimilation experienced by the magmas, we present combined crystallization and assimilation models, together with fractional crystallization models, to assess how relative abundances of the HSE have been modified during crystallization. The radiogenic osmium isotopic compositions (γOsinitial +15 to +193) of mafic igneous samples are consistent with assimilation of old high Re/Os crustal contaminants with radiogenic 187Os/188Os, whereas the HSE inter-element fractionations (Pd/Os 2 to >10,000) suggest that some Siberian samples underwent an early stage of sulfide removal.

Metalliferous samples from the Siberian intrusions of Khungtukun and Dzhaltul (associated with the Siberian flood basalts) yield internal 187Re–187Os ages of 266 ±83 Ma and 249 ±50 Ma, respectively, reflecting late-Permian emplacement ages. These results imply that crustal assimilation took place prior to crystallization of native-Fe. In contrast, metalliferous samples from Disko Island and Bühl (associated with the West Greenland flood basalts, and the Central European Volcanic Province, respectively) have trends in 187Re/188Os–187Os/188Os space corresponding to apparent ages older than their reported crystallization ages. These anomalous ages probably reflect concurrent assimilation of high Re/Os, radiogenic 187Os crust during crystallization of native-Fe, consistent with the character of local West Greenland sediments. In all three locations, calculations of combined assimilation of crustal sediments and fractional crystallization indicate between 1–7% assimilation can account for the Os-isotope systematics. In the case of Siberian samples, incompatible trace-element abundances indicate that lower crustal assimilation may have also occurred, consistent with the suggestion that crustal assimilation took place prior to native-Fe precipitation. The extent of local crustal contamination at Siberia, West Greenland, and Bühl necessitates that significant quantities of CH4, CO, CO2, SO2and H2O were released during assimilation of carbonaceous sediments. Consequently, carbonaceous sediment–basalt melt interactions have collateral effects on total gas output from flood basalt volcanism into the atmosphere. However, the amount of carbonaceous sediment contamination experienced by melts forming the Khungtukun and Dzhaltul intrusions alone, cannot explain the major C-isotope excursions at the Permo–Triassic mass-extinction event. Instead, further unsampled intrusions that also experienced significant carbonaceous sediment–melt interactions would be required. Enhanced greenhouse gas-emission during the Permo–Triassic mass extinction may have been facilitated by a combination of mantle melting and carbonaceous sediment–melt interactions, together with other proposed mechanisms, including wildfires, or by microbial metabolic exhalation.

Peters, BJ, Day JMD.  2014.  Assessment of relative Ti, Ta, and Nb (TITAN) enrichments in ocean island basalts. Geochemistry, Geophysics, Geosystems. 15(11):4424-4444.   10.1002/2014GC005506   Abstract

The sensitivity of trace element concentrations to processes governing solid-melt interactions has made them valuable tools for tracing the effects of partial melting, fractional crystallization, metasomatism, and similar processes on the composition of a parental melt. Recent studies of ocean island basalts (OIB) have sought to correlate Ti, Ta, and Nb (TITAN) anomalies to isotopic tracers, such as 3He/4He and 187Os/188Os ratios, which may trace primordial deep mantle sources. A new compilation of global OIB trace element abundance data indicates that positive TITAN anomalies, though statistically pervasive features of OIB, may not be compositional features of their mantle sources. OIB show a range of Ti (Ti/Ti* = 0.28–2.35), Ta (Ta/Ta* = 0.11–93.4), and Nb (Nb/Nb* = 0.13–17.8) anomalies that show negligible correlations with 3He/4He ratios, indicating that TITAN anomalies are not derived from the less-degassed mantle source traced by high-3He/4He. Positive TITAN anomalies can be modeled using variable degrees (0.1–10%) of nonmodal batch partial melting of garnet-spinel lherzolite at temperatures and pressures considered typical for OIB petrogenesis, and subjecting this partial melt to fractional crystallization and assimilation of mid-ocean ridge basalt-like crust (AFC). Correlations of TITAN anomalies with modal abundances of olivine and clinopyroxene in porphyritic Canary Islands lavas provide empirical support for this process and indicate that high abundances of these phases in OIB may create misleading trace element anomalies on primitive mantle-normalized spider diagrams. Because partial melting and AFC are common to all mantle-derived magmas, caution should be used when attributing TITAN anomalies to direct sampling of recycled or deep mantle sources by hotspots.

Peters, BJ, Shahar A, Carlson RW, Day JMD, Mock TD.  2019.  A sulfide perspective on iron isotope fractionation during ocean island basalt petrogenesis. Geochimica et Cosmochimica Acta. 245:59-78.   Abstract

Iron isotopic compositions are demonstrably powerful tracers of foundational planetary processes, including crust and core formation. In many volcanic environments, however, geochemical vestiges of these processes are obscured by the effects of magmatic differentiation on Fe isotopic compositions. Recent decades have witnessed continued refinement of observational and experimental approaches to Fe isotope fractionation during silicate differentiation. In contrast, the influence of sulfide fractionation on Fe isotopic compositions in terrestrial environments is known only from theoretical approaches and limited experimental data for relatively siliceous magmatic systems. One reason for this may be that sulfide fractionation is difficult to definitively trace using traditional major and minor element variation patterns. We utilize well-characterized lavas and cumulate xenoliths from Piton de la Fournaise and Piton des Neiges, Réunion Island, that have previously been examined for their highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) contents to investigate the effect of sulfide fractionation on Fe isotopes. The Fe isotopic compositions of the basalts range from δ56Fe values of 0.04 to 0.15‰ (average: 0.10‰) and the compositions of the cumulate xenoliths range from δ56Fe values of -0.07 to 0.08‰ (average: 0‰). In the absence of metal, HSE preferentially partition into sulfide phases, making them important tracers of sulfide segregation during magmatic differentiation. We find that commonly-observed co-variations between Fe isotopic compositions and major element oxide abundances are relatively underdeveloped for Réunion lavas. The correlation between Fe isotopic composition and MgO, for example, has a similar statistical significance to the correlation between Fe isotopic composition and Pd/Ir ratios, suggesting an important role of sulfides during Fe isotopic fractionation. After accounting for sulfide segregation, we determine that the parental magma Fe isotopic composition calculated for Piton de la Fournaise would be overestimated by 0.04‰ (within propagated error, 0.01-0.06‰) when considering silicate differentiation alone. An analogous calculation for Kilauea Iki basalts, for which there is available Fe isotopic and HSE data, yields a somewhat smaller difference of 0.02‰ (0-0.03‰). These differences may partially explain Fe isotopic compositions in other settings that could not previously be reconciled with a dominantly peridotitic and/or chondritic mantle source. This discovery may warrant discussion of the apparent decoupling between Fe and radiogenic isotopes in ocean island basalts, where the latter shows significant global variations and the former may show little or none. Our work highlights the need for additional constraints on the behavior of Fe isotopes during crustal recycling processes and reinforces the notion that consideration must be given to the effect of magmatic differentiation on Fe isotopic compositions.

Peters, BJ, Day JMD, Greenwood RC, Hilton DR, Gibson J, Franchi IA.  2017.  Helium-oxygen-osmium isotopic and elemental constraints on the mantle sources of the Deccan Traps. Earth and Planetary Science Letters. 478:245-257.   10.1016/j.epsl.2017.08.042   Abstract

The Deccan Traps, a 65 million-year-old continental flood basalt province located in western India, is the result of one of the largest short-lived magmatic events to have occurred on Earth. The nature and composition of its mantle source(s), however, have been difficult to resolve due to extensive assimilation of continental crust into the ascending Traps magmas. To circumvent this issue, using high-precision electron microprobe analysis, we have analyzed olivine grains from MgO-rich (up to 15.7wt.%) lavas that likely erupted before substantial crustal assimilation occurred. We compare olivine, pyroxene and plagioclase mineral chemistry and He–O–Os isotope compositions with bulk rock major-and trace-element abundances and 187Os/188Os for both bulk-rocks and mineral separates. Helium isotope compositions for the olivine grains generally show strong influence from crustal assimilation (<3 RA), but one ankaramite from the Pavagadh volcanic complex has a 3He/4He ratio of 10.7 RA, which is slightly lower than the range of 3He/4He measured for present-day Réunion Island volcanism (∼12–14 RA). Olivine-dominated mineral separates span a more restricted range in 187Os/188Os (0.1267 to 0.1443) compared with their host lavas (0.1186 to 0.5010), with the separates reflecting a parental magma composition less affected by lithospheric or crustal interaction than for the bulk-rocks. Despite significant He–Os isotopic variations, D17O is relatively invariant (−0.008 ±0.014 per mil)and indistinguishable from the bulk mantle, consistent with high-3He/4He hotspots measured to-date.

Compositions of olivine grains indicate the presence of up to 25% of a pyroxenite source for Deccan parental magmas, in good agreement with ∼20% predicted from isotopic data for the same samples. Modeled pyroxenite signatures appear like geochemical signatures expected to arise due to other types of mantle differentiation or due to assimilation of continental crust; however, we show that crustal assimilation cannot account for all of the compositional features of the olivine. Weak correlations exist between a global compilation of Xpx(Deccan: 0.2–0.7) and 3He/4He, δ18O (Deccan olivine: 4.9–5.2 per mil) and 187Os/188Os. Robust relationships between these parameters may be precluded due to a lack of two-reservoir source mixing, instead involving multiple mantle domains with distinct compositions, or because Xpxmay reflect both source features and crustal assimilation. Notwithstanding, geochemical similarities exist between Deccan Traps olivine (3He/4He =10.7 RA; 187Os/188Osi=0.1313 ±45, 2σ) and Réunion igneous rocks (3He/4He =12–14 RA; 187Os/188Osi=0.1324 ±14). These relationships imply that a characteristic geochemical ‘fingerprint’ may have persisted in the mantle plume that fed the Deccan Traps, since its inception at 65 Ma, to ongoing eruptions occurring on Réunion up to the present-day.

Peters, BJ, Day JMD, Taylor LA.  2016.  Early mantle heterogeneities in the Réunion hotspot source inferred from highly siderophile elements in cumulate xenoliths. Earth and Planetary Science Letters. 448:150-160.   10.1016/j.epsl.2016.05.015   Abstract

Ultramafic cumulate rocks form during intrusive crystallization of high-MgO magmas, incorporating relatively high abundances of compatible elements, including Cr and Ni, and high abundances of the highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, Re). Here, we utilize a suite of cumulate xenoliths from Piton de la Fournaise, La Réunion (Indian Ocean), to examine the mantle source composition of the Réunion hotspot using HSE abundances and Os isotopes. Dunite and wherlite xenoliths and associated lavas from the Piton de la Fournaise volcanic complex span a range of MgO contents (46 to 7 wt.%), yet exhibit remarkably homogeneous 187Os/188Os (0.1324±0.0014, 2σ), representing the Os-isotopic composition of Réunion hotspot primary melts. A significant fraction of the xenoliths also have primitive upper-mantle (PUM) normalized HSE patterns with elevated Ru and Pd (PUM-normalized Ru/Ir and Pd/Ir of 0.8–6.3 and 0.2–7.2, respectively). These patterns are not artifacts of alteration, fractional crystallization, or partial melting processes, but rather require a primary magma with similar relative enrichments. Some highly olivine-phyric (>40 modal percent olivine) Piton de la Fournaise lavas also preserve these relative Ru and Pd enrichments, while others preserve a pattern that is likely related to sulfur saturation in evolved melts.

The estimate of HSE abundances in PUM indicates high Ru/Ir and Pd/Pt values relative to carbonaceous, ordinary and enstatite chondrite meteorite groups. Thus, the existence of cumulate rocks with even more fractionated HSE patterns relative to PUM suggests that the Réunion hotspot samples a yet unrecognized mantle source. The origin of fractionated HSE patterns in Réunion melts may arise from sampling of a mantle source that experienced limited late accretion (<0.2% by mass) compared with PUM (0.5–0.8%), possibly involving impactors that were distinct from present-day chondrites, or limited core–mantle interactions. Given the remarkably homogeneous Os, Pb, and noble-gas isotopic signatures of Réunion, which plot near the convergence point of isotopic data for many hotspots, such a conclusion provides evidence for an early differentiated and subsequently isolated mantle domain that may be partially sampled by some ocean island basalts.

Peters, BJ, Day JMD.  2017.  A geochemical link between plume head and tail volcanism. Geochemical Perspective Letters. 5:29-34.   10.7185/geochemlet.1742   Abstract

Geodynamical models of mantle plumes often invoke initial, high volume plume ‘head’ magmatism, followed by lower volume plume ‘tails’. However, geochemical links between plume heads, represented by flood basalts such as the Deccan Traps, and plume tails, represented by ocean islands such as La Réunion, are ambiguous, challenging this classical view of mantle plume theory. Using Sr-Nd-Os isotope data, we demonstrate a geochemical link between archetypal plume head and tail volcanism in the Réunion hotspot. Similar plume head-tail relationships have not been definitively shown in previous geochemical studies for Réunion or other global hotspots. Such a link is enabled by use of compatible elements, such as Os, which can circumvent complexities introduced by magmatic assimilation of crust or lithosphere because these elements are scarce in crust compared to primary mantle melts. We calculate Sr-Nd-Os isotopic compositions for the Réunion primary magma and find these are identical to predictions for the Deccan primary magma. Our result provides geochemical evidence for a temporally stable mantle plume that samples a primitive reservoir associated with the African large low-shear-velocity province and with a heritage beginning at the Cretaceous-Palaeogene boundary.

Peters, BJ, Carlson RW, Day JMD, Horan MF.  2018.  Hadean silicate differentiation preserved by anomalous 142Nd/144Nd ratios in the Réunion hotspot source. Nature. 555:89-93.   doi:10.1038/nature25754   Abstract

Active volcanic hotspots can tap into domains in Earth’s deep interior that were formed more than two billion years ago1,2. High-precision data on variability in tungsten isotopes have shown that some of these domains resulted from differentiation events that occurred within the first fifty million years of Earth history3,4. However, it has not proved easy to resolve analogous variability in neodymium isotope compositions that would track regions of Earth’s interior whose composition was established by events occurring within roughly the first five hundred million years of Earth history5,6. Here we report 142Nd/144Nd ratios for Réunion Island igneous rocks, some of which are resolvably either higher or lower than the ratios in modern upper-mantle domains. We also find that Réunion 142Nd/144Nd ratios correlate with helium-isotope ratios (3He/4He), suggesting parallel behaviour of these isotopic systems during very early silicate differentiation, perhaps as early as 4.39 billion years ago. The range of 142Nd/144Nd ratios in Réunion basalts is inconsistent with a single-stage differentiation process, and instead requires mixing of a conjugate melt and residue formed in at least one melting event during the Hadean eon, 4.56 billion to 4 billion years ago. Efficient post-Hadean mixing nearly erased the ancient, anomalous 142Nd/144Nd signatures, and produced the relatively homogeneous 143Nd/144Nd composition that is characteristic of Réunion basalts. Our results show that Réunion magmas tap into a particularly ancient, primitive source compared with other volcanic hotspots7,8,9,10, offering insight into the formation and preservation of ancient heterogeneities in Earth’s interior.

Pringle, EA, Moynier F, Savage PS, Jackson MG, Moriera M, Day JMD.  2016.  Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of Ocean Island Basalts. Geochimica et Cosmochimica Acta. 189:282-295.   10.1016/j.gca.2016.06.008   Abstract

The study of silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to discern between different models for the origins of geochemical heterogeneities in the mantle. Relatively large (several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes relative to the dissolved Si. In contrast, only a limited range (tenths of a per mil) of Si isotope fractionation has been observed from high-temperature igneous processes. Therefore, Si isotopes may be useful as tracers for the presence of crustal material within OIB mantle source regions that experienced relatively low-temperature surface processes in a manner similar to other stable isotope systems, such as oxygen.

Characterizing the isotopic composition of the mantle is also of central importance to the use of the Si isotope system as a basis for comparisons with other planetary bodies (e.g., Moon, Mars, asteroids). Here we present the first comprehensive suite of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIB. Samples originate from ocean islands in the Pacific, Atlantic, and Indian Ocean basins and include representative endmembers for the EM-1, EM-2, and HIMU mantle components. On average, d30Si values for OIB (0.32 ± 0.09‰, 2 sd) are in general agreement with previous estimates for the d30Si value of Bulk Silicate Earth (0.29 ± 0.07‰, 2 sd; Savage et al., 2014). Nonetheless, some small systematic variations are present; specifically, most HIMU-type (Mangaia; Cape Verde; La Palma, Canary Islands) and Iceland OIB are enriched in the lighter isotopes of Si (d30Si values lower than MORB), consistent with recycled altered oceanic crust and lithospheric mantle in their mantle sources.