Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
B
Barry, PH, Hilton DR, Day JMD, Pernet-Fisher JF, Howarth GH, Magna T, Agashev AM, Pokhilenko NP, Pokhilenko LH, Taylor LA.  2015.  Helium isotopic evidence for modification of the cratonic lithosphere during the Permo-Triassic Siberian flood basalt event. Lithos. 216-217:73-80.   10.1016/j.lithos.2014.12.001   Abstract

Major flood basalt emplacement events can dramatically alter the composition of the sub-continental lithospheric mantle (SCLM). The Siberian craton experienced one of the largest flood basalt events preserved in the geologic record — eruption of the Permo-Triassic Siberian flood basalts (SFB) at ~250 Myr in response to upwelling of a deep-rooted mantle plume beneath the Siberian SCLM. Here,we present helium isotope (3He/4He) and concentration data for petrologically-distinct suites of peridotitic xenoliths recovered from two temporally-separated kimberlites:
the 360 Ma Udachnaya and 160 Ma Obnazhennaya pipes, which erupted through the Siberian SCLM and bracket the eruption of the SFB. Measured 3He/4He ratios span a range from 0.1 to 9.8 RA (where RA = air 3He/4He) and fall into two distinct groups: 1) predominantly radiogenic pre-plume Udachnaya samples (mean clinopyroxene 3He/4He = 0.41 ± 0.30 RA (1σ); n = 7 excluding 1 outlier), and 2) ‘mantle-like’ post plume Obnazhennaya samples (mean clinopyroxene 3He/4He=4.20±0.90 RA (1σ); n=5 excluding 1 outlier). Olivine separates from both kimberlite pipes tend to have higher 3He/4He than clinopyroxenes (or garnet). Helium contents in Udachnaya samples ([He] = 0.13–1.35 μcm3STP/g; n = 6) overlap with those of Obnazhennaya
([He]=0.05–1.58 μcm3STP/g; n = 10), but extend to significantly higher values in some instances ([He]=49–349 μcm3STP/g; n = 4). Uranium and thorium contents are also reported for the crushed material from which He was extracted in order to evaluate the potential for He migration from the mineral matrix to fluid inclusions. The wide range in He content, together with consistently radiogenic He-isotope values in Udachnaya peridotites suggests that crustal-derived fluids have incongruently metasomatized segments of the Siberian SCLM, whereas high 3He/4He values in Obnazhennaya peridotites show that this section of the SCLM has been overprinted by Permo-Triassic (plume-derived) basaltic fluids. Indeed, the stark contrast between pre- and post-plume 3He/4He ratios in peridotite xenoliths highlights the potentially powerful utility of He-isotopes for differentiating between various types of metasomatism (i.e., crustal versus basaltic fluids).

Bottke, WF, Walker RJ, Day JMD, Nesvorny D, Elkins-Tanton L.  2010.  Stochastic Late Accretion to Earth, the Moon, and Mars. Science. 330:1527-1530.   10.1126/science.1196874   AbstractWebsite

Core formation should have stripped the terrestrial, lunar, and martian mantles of highly siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances. Late accretion may offer a solution, provided that >= 0.5% Earth masses of broadly chondritic planetesimals reach Earth's mantle and that similar to 10 and similar to 1200 times less mass goes to Mars and the Moon, respectively. We show that leftover planetesimal populations dominated by massive projectiles can explain these additions, with our inferred size distribution matching those derived from the inner asteroid belt, ancient martian impact basins, and planetary accretion models. The largest late terrestrial impactors, at 2500 to 3000 kilometers in diameter, potentially modified Earth's obliquity by similar to 10 degrees, whereas those for the Moon, at similar to 250 to 300 kilometers, may have delivered water to its mantle.

Brandon, AD, Puchtel IS, Walker RJ, Day JMD, Irving AJ, Taylor LA.  2012.  Evolution of the martian mantle inferred from the Re-187-Os-187 isotope and highly siderophile element abundance systematics of shergottite meteorites. Geochimica Et Cosmochimica Acta. 76:206-235.   10.1016/j.gca.2011.09.047   AbstractWebsite

Shergottite meteorites are a suite of mafic to ultramafic igneous rocks whose parental magmas probably derived from the martian mantle. In this study, a suite of 23 shergottites, spanning their known range in bulk compositions, Rb-Sr, Sm-Nd, and Lu-Hf isotopes, were measured for Re-187-Os-187 isotopic systematics and highly siderophile element abundances (HSE: including Os, Ir, Ru, Pt, Pd, Re). The chief objective was to gain new insight on the chemical evolution of the martian mantle by unraveling the long-term HSE budget of its derivative melts. Possible effects upon HSEs related to crustal contamination, as well as terrestrial and/or martian surface alteration are also examined. Some of the shergottites are hot arid-desert finds. Their respective acetic acid leachates and residues show that both Re and Os display open-system behavior during sample residence at or near the martian and/or terrestrial surfaces. In some meteorites, the alteration effects can be circumvented by analysis of the leached residues. For those shergottites believed to record robust Re-Os isotopic systematics, calculated initial Os-187/Os-188 are well correlated with the initial Nd-143/Nd-144. Shergottites from mantle sources with long-term melt-depleted characteristics (initial epsilon Nd-143 of + 36 to + 40) have chondritic initial gamma Os-187 ranging from -0.5 to + 2.5. Shergottites with intermediate initial epsilon Nd-143 of + 8 to + 17 have a range in initial gamma Os-187 of -0.6 to + 2.3, which overlaps the range for depleted shergottites. Shergottites from long-term enriched sources, with initial epsilon Nd-143 of similar to-7, are characterized by suprachondritic gamma Os-187 values of + 5 to + 15. The initial gamma Os-187 variations for the shergottites do not show a correlation with indices of magmatic differentiation, such as MgO, or any systematic differences between hot arid-desert finds, Antarctic finds, or observed falls. The strong correlation between the initial epsilon Nd-143 and gamma Os-187 in shergottites from approximately + 40 and 0 to -7 and + 15, respectively, is assessed in models for mixing depleted mantle-derived melts with ancient crust (modeled to be similar to evolved shergottite in composition), and with assimilation-fractional crystallization. These models show that the correlation is unlikely to result from participation of martian crust. More likely, this correlation relates to contributions from depleted and enriched reservoirs formed in a martian magma ocean at ca. 4.5 Ga. These models indicate that the shergottite endmember sources were generated by mixing between residual melts and cumulates that formed at variable stages during solidification of a magma ocean. The expanded database for the HSE abundances in shergottites suggests that their martian mantle sources have similar HSE abundances to the terrestrial mantle, consistent with prior studies. The relatively high HSE abundances in both planetary mantles likely cannot be accounted for by high pressure-temperature metal-silicate partitioning at the bases of magma oceans, as has been suggested for Earth. If the HSE were instead supplied by late accretion, this event must have occurred prior to the crystallization of the last martian magma ocean. (C) 2011 Elsevier Ltd. All rights reserved.