Export 85 results:
Sort by: Author Title Type [ Year  (Desc)]
Howarth, GH, Udry A, Day JMD.  2018.  Petrogenesis of basaltic shergottite Northwest Africa 8657: Implications for fO2 correlations and element redistribution during shock melting in shergottites. Meteoritics and Planetary Science. 53:249-267.   10.1111/maps.12999   AbstractWebsite

Northwest Africa (NWA) 8657 is an incompatible trace element-enriched, low-Al basaltic shergottite, similar in texture and chemistry to Shergotty, Zagami, and NWA 5298. It is composed of zoned pyroxene, maskelynite, merrillite, and Ti-oxide minerals with minor apatite, silica, and pyrrhotite. Pyroxene grains are characterized by patchy zoning, with pigeonite or augite cores zoned to Fe-rich pigeonite mantles. The cores have rounded morphologies and irregular margins. Combined with the low Ti/Al of the cores, the morphology and chemistry of the pyroxene grains are consistent with initial crystallization at depth (30–70 km) followed by partial resorption en route to the surface. Enriched rare earth element (REE) equilibrium melt compositions and calculated oxygen fugacities (fO2) conditions for pigeonite cores indicate that the original parent melts were enriched shergottite magmas that staged in chambers at depth within the Martian crust. NWA 8657 does not represent a liquid but rather entrained a proportion of pyroxene crystals from magma chambers where fractional crystallization was occurring at depth. Variation between fO2 and bulk-rock (La/Yb)N of the enriched and intermediate shergottites suggests that oxidation conditions and degree of incompatible element enrichment in the source may not be correlated, as thought previously. Shock melt pockets are characterized by an absence of phosphates and oxide minerals. It is likely that these phases were melted during shock. REEs were redistributed during this process into maskelynite and to a lesser extent the shock melt; however, the overall normalized REE profile of the shock melt is like that of the bulk-rock, but at lower absolute concentrations. Overall, shock melting has had a significant effect on the mineralogy of NWA 8657, especially the distribution of phosphates, which may be significant for geochronological applications of this meteorite and other Martian meteorites with extensive shock melt.

Truong, TB, Castillo PR, Hilton DR, Day JMD.  2018.  The trace element and Sr-Nd-Pb isotope geochemistry of Juan Fernandez lavas reveal variable contributions from a high-3He/4He mantle plume. Chemical Geology. 476:280-291.   10.1016/j.chemgeo.2017.11.024   Abstract

The Juan Fernandez Islands in the southeastern Pacific are an atypical linear volcanic chain that exhibits a considerable range in 3He/4He ratios (8 to 18 RA, where RA is the 3He/4He ratio of air), but limited ranges of 87Sr/86Sr and 143Nd/144Nd. Here we report new trace element abundance data and Sr-Nd-Pb isotope data for mafic lavas previously analyzed for their 3He/4He and He contents from the two main islands of Robinson Crusoe and Alexander Selkirk. Lavas from these islands have been previously grouped based on geochemical and petrological classification into Group I and III basalts, and Group II basanites. In general, samples have overlapping Sr-Nd-Pb isotope compositions that suggest a common, albeit slightly heterogeneous mantle source. In detail, the Group I and III tholeiitic and alkalic basalts have nearly identical incompatible trace element patterns, whereas the Group II basanites show elevated incompatible trace element abundances. Major and incompatible trace element modeling indicates that Group III basalts (3He/4He = 7.8–9.5 RA) from younger Alexander Selkirk Island were produced by the highest degree of partial melting (> 10%) of a common mantle source, followed by Group I basalts (13.6–18.0 RA) and Group II basanites (11.2–12.5 RA) from older Robinson Crusoe Island. The 206Pb/204Pb of Group I basalts and Group II basanites are slightly more radiogenic and limited in range (19.163 to 19.292) compared with those of Group III (18.939 to 19.221). The Group I and II lavas from Robinson Crusoe are consistent with an origin from the so-called focus zone (FOZO) mantle component, whereas the Alexander Selkirk basalts additionally contain contributions from a less-enriched or relatively depleted mantle component. Juan Fernandez lavas reveal limited ranges of Sr-Nd-Pb isotopes but variable 3He/4He as their parental magmas originated mainly from the FOZO component with high 3He/4He (> 9 RA) and variably polluted with a depleted component with lower 3He/4He (ca. 8 RA). Contributions from high-3He/4He mantle sources to ocean island basalts can therefore vary both spatially and temporally, over meter to kilometer lengths and hundred to million-year time scales, and may not be strongly correlated to radiogenic lithophile isotope systematics.

Dhaliwal, JK, Day JMD, Moynier F.  2018.  Volatile element loss during planetary magma ocean phases. Icarus. 300:249-260.   10.1016/j.icarus.2017.09.002   Abstract

Moderately volatile elements (MVE) are key tracers of volatile depletion in planetary bodies. Zinc is an especially useful MVE because of its generally elevated abundances in planetary basalts, relative to other MVE, and limited evidence for mass-dependent isotopic fractionation under high-temperature igneous processes. Compared with terrestrial basalts, which have δ66Zn values (per mille deviation of the 66Zn/64Zn ratio from the JMC-Lyon standard) similar to some chondrite meteorites (∼+0.3‰), lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ (2 st. dev.). Furthermore, mare basalts have average Zn concentrations ∼50 times lower than in typical terrestrial basaltic rocks. Late-stage lunar magmatic products, including ferroan anorthosite, Mg- and Alkali-suite rocks have even higher δ66Zn values (+3 to +6‰). Differences in Zn abundance and isotopic compositions between lunar and terrestrial rocks have previously been interpreted to reflect evaporative loss of Zn, either during the Earth-Moon formatting Giant Impact, or in a lunar magma ocean (LMO) phase. To explore the mechanisms and processes under which volatile element loss may have occurred during a LMO phase, we developed models of Zn isotopic fractionation that are generally applicable to planetary magma oceans. Our objective was to identify conditions that would yield a δ66Zn signature of ∼ +1.4‰ within the lunar mantle. For the sake of simplicity, we neglect possible Zn isotopic fractionation during the Giant Impact, and assumed a starting composition equal to the composition of the present-day terrestrial mantle, assuming both the Earth and Moon had zinc ‘consanguinity’ following their formation. We developed two models: the first simulates evaporative fractionation of Zn only prior to LMO mixing and crystallization; the second simulates continued evaporative fractionation of Zn that persists until ∼75% LMO crystallization. The first model yields a relatively homogenous bulk solid LMO δ66Zn value, while the second results in a stratification of δ66Zn values within the LMO sequence. Loss and/or isolation mechanisms for volatiles are critical to these models; hydrodynamic escape was not a dominant process, but loss of a nascent lunar atmosphere or separation of condensates into a proto-lunar crust are possible mechanisms by which volatiles could be separated from the lunar interior. The results do not preclude models that suggest a lunar volatile depletion episode related to Giant Impact. Conversely, LMO models for volatile loss do not require loss of volatiles prior to lunar formation. Outgassing during planetary magma ocean phases likely played a profound part in setting the volatile inventories of planets, particularly for low mass bodies that experienced the greatest volatile loss. In turn, our result suggest that the initial compositions of planets that accreted from smaller, highly differentiated planetesimals were likely to be severely volatile depleted.

Day, JMD, Koppers AAP, Mendenhall BC, Oller B.  2018.  The ‘Scripps Dike’ and its implications for mid-Miocene volcanism and tectonics of the California Continental Borderland. From the Mountains to the Abyss: The California Borderland as an Archive of Southern California Geologic Evolution - SEPM Special Publication. 110: Society for Sedimentary Geology   10.2110/sepmsp.110.01   Abstract

New field observations, petrology, geochemistry, and 40Ar/39Ar geochronology are reported for the Scripps Dike, which crops out at the coast north of La Jolla, California. The northeast–southwest-trending and laterally discontinuous dike has a basaltic–trachyandesite bulk composition,
with an emplacement age of 13.89 6 0.13 Ma. Modeling of the dike composition indicates that it formed from 0.5 to 1.5% partial melting of a primitive mantle-type source, metasomatized by slab fluids, predominantly in the garnet stability field. The composition of the dike, including relatively high MgO (6.6 wt.%) and Sr/Y (~105), makes it akin to magnesian andesites in Baja California, Mexico, termed ‘‘bajaites.’’ Field evidence indicates
that the current exposure of the dike is close to the original stalling depth, it was probably associated with explosive volcanism, and the dike flowed laterally. After accounting for alteration, the dike has an initial 87Sr/86Sr composition of 0.70390, with limited evidence for crustal contamination, consistent with derivation from a slab-fluid-metasomatized mantle source. The composition of the dike places it broadly in the range of Miocene California Continental Borderland (hereafter referred to as Borderland) volcanic rocks studied previously. A comparison of ages of volcanic rocks occurring along the Borderland margin reveals an approximately age-progressive trend to the southeast. This represents an opposite sense to the apparent ageprogressive trend for Miocene to Recent volcanic rocks north of the Western Transverse Ranges. Possible models to explain the compositions and age relationships of Miocene to Recent volcanic rocks of the Borderland region include southeasterly migration of volcanism in response to Rivera Triple Junction movement and slab window formation, or the presence of a weak ‘‘hotspot’’ that has been active since at least the Miocene. Identification of the process(es) responsible for Borderland volcanism is currently limited by dissection and northwestward movement of Borderland rocks in response to northwest–southeast shearing of the Pacific–North American plate boundary, and by the quality and quantity of reported age-dates and paleomagnetic information. The formation processes of volcanism in the Borderland have ramifications for palinspastic reconstruction of the margin, as well as for the thermal and magmatic evolution of western California in response to a change in plate motion in a subduction to transform setting. The Scripps Dike provides evidence that regions of the mantle beneath the California Continental Borderland were metasomatized by slab fluids in a manner similar to portions of mantle beneath central Baja California, Mexico.

Dhaliwal, JK, Day JMD, Corder CA, Tait KT, Marti K, Assayag N, Cartigny P, Rumble D, Taylor LA.  2017.  Early metal-silicate differentiation during planetesimal formation revealed by acapulcoite and lodranite meteorites. Geochimica et Cosmochimica Acta. 216:115-140.   10.1016/j.gca.2017.06.042   AbstractWebsite

In order to establish the role and expression of silicate-metal fractionation in early planetesimal bodies, we have conducted a highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) abundance and 187Re-187Os study of acapulcoite-lodranite meteorites. These data are reported with new petrography, mineral chemistry, bulk-rock major and trace element geochemistry, and oxygen isotopes for Acapulco, Allan Hills (ALHA) 81187, Meteorite Hills (MET) 01195, Northwest Africa (NWA) 2871, NWA 4833, NWA 4875, NWA 7474 and two examples of transitional acapulcoite-lodranites, Elephant Moraine (EET) 84302 and Graves Nunataks (GRA) 95209. These data support previous studies that indicate that these meteorites are linked to the same parent body and exhibit limited degrees (<2–7%) of silicate melt removal. New HSE and osmium isotope data demonstrate broadly chondritic relative and absolute abundances of these elements in acapulcoites, lower absolute abundances in lodranites and elevated (>2 × CI chondrite) HSE abundances in transitional acapulcoite-lodranite meteorites (EET 84302, GRA 95209). All of the meteorites have chondritic Re/Os with measured 187Os/188Os ratios of 0.1271 ± 0.0040 (2 St. Dev.). These geochemical characteristics imply that the precursor material of the acapulcoites and lodranites was broadly chondritic in composition, and were then heated and subject to melting of metal and sulfide in the Fe-Ni-S system. This resulted in metallic melt removal and accumulation to form lodranites and transitional acapulcoite-lodranites. There is considerable variation in the absolute abundances of the HSE, both among samples and between aliquots of the same sample, consistent with both inhomogeneous distribution of HSE-rich metal, and of heterogeneous melting and incomplete mixing of silicate material within the acapulcoite-lodranite parent body. Oxygen isotope data for acapulcoite-lodranites are also consistent with inhomogeneous melting and mixing of accreted components from different nebular sources, and do not form a well-defined mass-dependent fractionation line. Modeling of HSE inter-element fractionation suggests a continuum of melting in the Fe-Ni-S system and partitioning between solid metal and sulfur-bearing mineral melt, where lower S contents in the melt resulted in lower Pt/Os and Pd/Os ratios, as observed in lodranites. The transitional meteorites, EET 84302 and GRA 95209, exhibit the most elevated HSE abundances and do not follow modelled Pt/Os and Pd/Os solid metal-liquid metal partitioning trends. We interpret this to reflect metal melt pooling into domains that were sampled by these meteorites, suggesting that they may originate from deeper within the acapulcoite-lodranite parent body, perhaps close to a pooled metallic ‘core’ region. Petrographic examination of transitional samples reveals the most extensive melting, pooling and networking of metal among the acapulcoite-lodranite meteorites. Overall, our results show that solid metal-liquid metal partitioning in the Fe-Ni-S system in primitive achondrites follows a predictable sequence of limited partial melting and metal melt pooling that can lead to significant HSE inter-element fractionation effects in proto-planetary materials.

Peters, BJ, Day JMD.  2017.  A geochemical link between plume head and tail volcanism. Geochemical Perspective Letters. 5:29-34.   10.7185/geochemlet.1742   Abstract

Geodynamical models of mantle plumes often invoke initial, high volume plume ‘head’ magmatism, followed by lower volume plume ‘tails’. However, geochemical links between plume heads, represented by flood basalts such as the Deccan Traps, and plume tails, represented by ocean islands such as La Réunion, are ambiguous, challenging this classical view of mantle plume theory. Using Sr-Nd-Os isotope data, we demonstrate a geochemical link between archetypal plume head and tail volcanism in the Réunion hotspot. Similar plume head-tail relationships have not been definitively shown in previous geochemical studies for Réunion or other global hotspots. Such a link is enabled by use of compatible elements, such as Os, which can circumvent complexities introduced by magmatic assimilation of crust or lithosphere because these elements are scarce in crust compared to primary mantle melts. We calculate Sr-Nd-Os isotopic compositions for the Réunion primary magma and find these are identical to predictions for the Deccan primary magma. Our result provides geochemical evidence for a temporally stable mantle plume that samples a primitive reservoir associated with the African large low-shear-velocity province and with a heritage beginning at the Cretaceous-Palaeogene boundary.

Clay, PL, Burgess R, Busemann H, Ruzie-Hamilton L, Joachim B, Day JMD, Ballentine CJ.  2017.  Halogens in chondritic meteorites and terrestrial accretion. Nature. 551:614-618.   10.1038/nature24625   Abstract

Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15–37 times lower, respectively, than previously reported and usually accepted estimates1. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass2,3,4,5, cannot solely account for present-day terrestrial halogen inventories6,7. It is estimated that 80–90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs7,8 and have not undergone the extreme early loss observed in atmosphere-forming elements9. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases10, the efficient extraction of halogen-rich fluids6 from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track with water, supports this requirement, and is consistent with volatile-rich or water-rich late-stage terrestrial accretion5,11,12,13,14.

Peters, BJ, Day JMD, Greenwood RC, Hilton DR, Gibson J, Franchi IA.  2017.  Helium-oxygen-osmium isotopic and elemental constraints on the mantle sources of the Deccan Traps. Earth and Planetary Science Letters. 478:245-257.   10.1016/j.epsl.2017.08.042   Abstract

The Deccan Traps, a 65 million-year-old continental flood basalt province located in western India, is the result of one of the largest short-lived magmatic events to have occurred on Earth. The nature and composition of its mantle source(s), however, have been difficult to resolve due to extensive assimilation of continental crust into the ascending Traps magmas. To circumvent this issue, using high-precision electron microprobe analysis, we have analyzed olivine grains from MgO-rich (up to 15.7wt.%) lavas that likely erupted before substantial crustal assimilation occurred. We compare olivine, pyroxene and plagioclase mineral chemistry and He–O–Os isotope compositions with bulk rock major-and trace-element abundances and 187Os/188Os for both bulk-rocks and mineral separates. Helium isotope compositions for the olivine grains generally show strong influence from crustal assimilation (<3 RA), but one ankaramite from the Pavagadh volcanic complex has a 3He/4He ratio of 10.7 RA, which is slightly lower than the range of 3He/4He measured for present-day Réunion Island volcanism (∼12–14 RA). Olivine-dominated mineral separates span a more restricted range in 187Os/188Os (0.1267 to 0.1443) compared with their host lavas (0.1186 to 0.5010), with the separates reflecting a parental magma composition less affected by lithospheric or crustal interaction than for the bulk-rocks. Despite significant He–Os isotopic variations, D17O is relatively invariant (−0.008 ±0.014 per mil)and indistinguishable from the bulk mantle, consistent with high-3He/4He hotspots measured to-date.

Compositions of olivine grains indicate the presence of up to 25% of a pyroxenite source for Deccan parental magmas, in good agreement with ∼20% predicted from isotopic data for the same samples. Modeled pyroxenite signatures appear like geochemical signatures expected to arise due to other types of mantle differentiation or due to assimilation of continental crust; however, we show that crustal assimilation cannot account for all of the compositional features of the olivine. Weak correlations exist between a global compilation of Xpx(Deccan: 0.2–0.7) and 3He/4He, δ18O (Deccan olivine: 4.9–5.2 per mil) and 187Os/188Os. Robust relationships between these parameters may be precluded due to a lack of two-reservoir source mixing, instead involving multiple mantle domains with distinct compositions, or because Xpxmay reflect both source features and crustal assimilation. Notwithstanding, geochemical similarities exist between Deccan Traps olivine (3He/4He =10.7 RA; 187Os/188Osi=0.1313 ±45, 2σ) and Réunion igneous rocks (3He/4He =12–14 RA; 187Os/188Osi=0.1324 ±14). These relationships imply that a characteristic geochemical ‘fingerprint’ may have persisted in the mantle plume that fed the Deccan Traps, since its inception at 65 Ma, to ongoing eruptions occurring on Réunion up to the present-day.

Stronik, NA, Trumbull RB, Krienitz M-S, Niedermann S, Romer RL, Harris C, Day JMD.  2017.  Helium isotope evidence for a deep-seated mantle plume involved in South Atlantic breakup. Geology. 45(9):827-830.   10.1130/G39151.1   Abstract

Earth history has been punctuated by episodes of short-lived (<10 m.y.), high-volume (>106 km3) magmatism. The origin of these events and their manifestations as large igneous provinces (LIPs) with associated continental flood basalts do not fit in the current plate-tectonic paradigm. Upper-mantle processes have been invoked for some LIPs, whereas the origin of others appears to be related to plumes rising from the deep mantle. The Paraná-Etendeka LIP has remained enigmatic and highly contested in terms of plume versus upper-mantle models. Here, we provide evidence for a plume origin based on new isotopic (He, O, Sr, Nd, Pb) and trace-element data from olivine-rich dikes from Namibia. The composition of the dikes can be explained by mixing at shallow depths between a plume source with high 3He/4He (>26 RA) and ambient asthenospheric mantle, before ascent through the thinning lithosphere.

Day, JMD, Moynier F, Shearer CK.  2017.  Late-stage magmatic outgassing from a volatile-depleted Moon. Proceedings of the National Academy of Sciences. 114(35):9547-9551.   10.1073/pnas.1708236114   AbstractWebsite

The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth’s depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the “Rusty Rock” impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δ66Zn = −13.7‰), heavy Cl (δ37Cl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δ66Zn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.

Amsellam, E, Moynier F, Pringle EA, Bouvier A, Chen H, Day JMD.  2017.  Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes. Earth and Planetary Science Letters. 469:75-83.   10.1016/j.epsl.2017.04.022   Abstract

Understanding the composition of raw materials that formed the Earth is a crucial step towards
understanding the formation of terrestrial planets and their bulk composition. Calcium is the fifth most
abundant element in terrestrial planets and, therefore, is a key element with which to trace planetary
composition. However, in order to use Ca isotopes as a tracer of Earth’s accretion history, it is first
necessary to understand the isotopic behavior of Ca during the earliest stages of planetary formation.
Chondrites are some of the oldest materials of the Solar System, and the study of their isotopic
composition enables understanding of how and in what conditions the Solar System formed. Here we
present Ca isotope data for a suite of bulk chondrites as well as Allende (CV) chondrules. We show that
most groups of carbonaceous chondrites (CV, CI, CR and CM) are significantly enriched in the lighter Ca
isotopes (δ44/40Ca= +0.1 to +0.93) compared with bulk silicate Earth (δ44/40Ca= +1.05 ± 0.04,
Huang et al., 2010) or Mars, while enstatite chondrites are indistinguishable from Earth in Ca isotope
composition (δ44/40Ca = +0.91 to +1.06). Chondrules from Allende are enriched in the heavier
isotopes of Ca compared to the bulk and the matrix of the meteorite (δ44/40Ca = +1.00 to +1.21).
This implies that Earth and Mars have Ca isotope compositions that are distinct from most carbonaceous
chondrites but that may be like chondrules. This Ca isotopic similarity between Earth, Mars, and
chondrules is permissive of recent dynamical models of planetary formation that propose a chondrulerich
accretion model for planetary embryos.

Mundl, A, Touboul M, Jackson MG, Day JMD, Kurz MD, Lekic V, Helz RT, Walker RJ.  2017.  Tungsten-182 heterogeneity in modern ocean island basalts. Science. 356(6333):66-69.   10.1126/science.aal4179   Abstract

New tungsten isotope data for modern ocean island basalts (OIB) from Hawaii, Samoa, and Iceland reveal variable 182W/184W, ranging from that of the ambient upper mantle to ratios as much as 18 parts per million lower. The tungsten isotopic data negatively correlate with 3He/4He. These data indicate that each OIB system accesses domains within Earth that formed within the first 60 million years of solar system history. Combined isotopic and chemical characteristics projected for these ancient domains indicate that they contain metal and are repositories of noble gases. We suggest that the most likely source candidates are mega–ultralow-velocity zones, which lie beneath Hawaii, Samoa, and Iceland but not beneath hot spots whose OIB yield normal 182W and homogeneously low 3He/4He.

Lowder, KB, Allen MC, Day JMD, Deheyn DD, Taylor JRA.  2017.  Assessment of ocean acidification and warming on the growth, calcification, and biophotonics of a California grass shrimp. ICES Journal of Marine Science.   doi:10.1093/icesjms/fsw246   Abstract

Cryptic colouration in crustaceans, important for both camouflage and visual communication, is achieved through physiological and morphological mechanisms that are sensitive to changes in environmental conditions. Consequently, ocean warming and ocean acidification can affect crustaceans’ biophotonic appearance and exoskeleton composition in ways that might disrupt colouration and transparency. In the present study, we measured growth, mineralization, transparency, and spectral reflectance (colouration) of the caridean grass shrimp Hippolyte californiensis in response to pH and temperature stressors. Shrimp were exposed to ambient pH and temperature (pH 8.0, 17 °C), decreased pH (pH 7.5, 17 °C), and decreased pH/increased temperature (pH 7.5, 19 °C) conditions for 7 weeks. There were no differences in either Mg or Ca content in the exoskeleton across treatments nor in the transparency and spectral reflectance. There was a small but significant increase in percent growth in the carapace length of shrimp exposed to decreased pH/increased temperature. Overall, these findings suggest that growth, calcification, and colour of H. californiensis are unaffected by decreases of 0.5 pH units. This tolerance might stem from adaptation to the highly variable pH environment that these grass shrimp inhabit, highlighting the multifarious responses to ocean acidification, within the Crustacea.

Day, JMD, Walker RJ, Warren JM.  2017.  Os-186-Os-187 and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochimica et Cosmochimica Acta. 200:232-254.   10.1016/j.gca.2016.12.013   Abstract

Abyssal peridotites are oceanic mantle fragments that were recently processed through ridges and represent residues of both modern and ancient melting. To constrain the nature and timing of melt depletion processes, and the composition of the mantle, we report high-precision Os isotope data for abyssal peridotites from three ocean basins, as well as for Os-rich alloys, primarily from Mesozoic ophiolites. These data are complemented by whole-rock highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), trace- and major-element abundances for the abyssal peridotites, which are from the Southwest Indian (SWIR), Central Indian (CIR), Mid-Atlantic (MAR) and Gakkel Ridges. The results reveal a limited role for melt refertilization or secondary alteration processes in modifying abyssal peridotite HSE compositions. The abyssal peridotites examined have experienced variable melt depletion (2% to >16%), which occurred >0.5 Ga ago for some samples. Abyssal peridotites typically exhibit low Pd/Ir and, combined with high-degrees of estimated total melt extraction, imply that they were relatively refractory residues prior to incorporation into their present ridge setting. Recent partial melting processes and mid-ocean ridge basalt (MORB) generation therefore played a limited role in the chemical evolution of their precursor mantle domains. The results confirm that many abyssal peridotites are not simple residues of recent MORB source melting, having a more complex and long-lived depletion history.

Peridotites from the Gakkel Ridge, SWIR, CIR and MAR indicate that the depleted MORB mantle has 186Os/188Os of 0.1198356 ±21 (2SD). The Phanerozoic Os-rich alloys yield an average 186Os/188Os within uncertainty of abyssal peridotites (0.1198361 ±20). Melt depletion trends defined between Os isotopes and melt extraction indices (e.g., Al2O3) allow an estimate of the primitive mantle (PM) composition, using only abyssal peridotites. This yields 187Os/188Os (0.1292 ±25), and 186Os/188Os of 0.1198388 ±29, both of which are within uncertainty of previous primitive mantle estimates. The 186Os/188Os composition of the PM is less radiogenic than for some plume-related lavas, with the latter requiring sources with high long-term time-integrated Pt/Os. Estimates of primitive mantle HSE concentrations using abyssal peridotites define chondritic Pd/Ir, which differs from previous supra-chondritic estimates for Pd/Ir based on peridotites from a range of tectonic settings. By contrast, estimates of PM yield non-chondritic Ru/Ir. The cause of enhanced Ru in the mantle remains enigmatic, but may reflect variable partitioning behaviour of Ru at high pressure and temperature.

Howarth, GH, Day JMD, Pernet-Fisher JF, Goodrich CA, Pearson DG, Luo Y, Ryabov VV, Taylor LA.  2017.  Precious metal enrichment at low-redox in terrestrial native Fe-bearing basalts investigated using laser-ablation ICP-MS. Geochimica et Cosmochimica Acta.   10.1016/j.gca.2017.01.003   Abstract

Primary native Fe is a rare crystallizing phase from terrestrial basaltic magmas, requiring highly reducing conditions (fO2

Pernet-Fisher, JF, Day JMD, Howarth GH, Ryabov VV, Taylor LA.  2017.  Atmospheric outgassing and native-iron formation during carbonaceous sediment–basalt melt interactions. Earth and Planetary Science Letters. 460:201-212.   Abstract

Organic carbon-rich sediment assimilation by basaltic magmas leads to enhanced emission of greenhouse gases during continental flood basalt eruptions. A collateral effect of these interactions is the generation of low oxygen fugacities (fO2)(below the iron-wüstite [IW] buffer curve) during magmatic crystallization, resulting in the precipitation of native-iron. The occurrence of native-iron bearing terrestrial basaltic rocks are rare, having been identified at three locations: Siberia, West Greenland, and Central Germany. We report the first combined study of Re–Os isotopes, highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), and trace-element abundances for these three occurrences, in addition to host sediments at West Greenland. To quantify the amount of crustal assimilation experienced by the magmas, we present combined crystallization and assimilation models, together with fractional crystallization models, to assess how relative abundances of the HSE have been modified during crystallization. The radiogenic osmium isotopic compositions (γOsinitial +15 to +193) of mafic igneous samples are consistent with assimilation of old high Re/Os crustal contaminants with radiogenic 187Os/188Os, whereas the HSE inter-element fractionations (Pd/Os 2 to >10,000) suggest that some Siberian samples underwent an early stage of sulfide removal.

Metalliferous samples from the Siberian intrusions of Khungtukun and Dzhaltul (associated with the Siberian flood basalts) yield internal 187Re–187Os ages of 266 ±83 Ma and 249 ±50 Ma, respectively, reflecting late-Permian emplacement ages. These results imply that crustal assimilation took place prior to crystallization of native-Fe. In contrast, metalliferous samples from Disko Island and Bühl (associated with the West Greenland flood basalts, and the Central European Volcanic Province, respectively) have trends in 187Re/188Os–187Os/188Os space corresponding to apparent ages older than their reported crystallization ages. These anomalous ages probably reflect concurrent assimilation of high Re/Os, radiogenic 187Os crust during crystallization of native-Fe, consistent with the character of local West Greenland sediments. In all three locations, calculations of combined assimilation of crustal sediments and fractional crystallization indicate between 1–7% assimilation can account for the Os-isotope systematics. In the case of Siberian samples, incompatible trace-element abundances indicate that lower crustal assimilation may have also occurred, consistent with the suggestion that crustal assimilation took place prior to native-Fe precipitation. The extent of local crustal contamination at Siberia, West Greenland, and Bühl necessitates that significant quantities of CH4, CO, CO2, SO2and H2O were released during assimilation of carbonaceous sediments. Consequently, carbonaceous sediment–basalt melt interactions have collateral effects on total gas output from flood basalt volcanism into the atmosphere. However, the amount of carbonaceous sediment contamination experienced by melts forming the Khungtukun and Dzhaltul intrusions alone, cannot explain the major C-isotope excursions at the Permo–Triassic mass-extinction event. Instead, further unsampled intrusions that also experienced significant carbonaceous sediment–melt interactions would be required. Enhanced greenhouse gas-emission during the Permo–Triassic mass extinction may have been facilitated by a combination of mantle melting and carbonaceous sediment–melt interactions, together with other proposed mechanisms, including wildfires, or by microbial metabolic exhalation.

Day, JMD, Corder CA, Cartigny P, M. SA, Assayag N, Rumble D, Taylor LA.  2017.  A carbon-rich region in Miller Range 091004 and implications for ureilite petrogenesis. Geochimica et Cosmochimica Acta. 198:379-395.   10.1016/j.gca.2016.11.026   Abstract

Ureilite meteorites are partially melted asteroidal-peridotite residues, or more rarely, cumulates that can contain greater than three weight percent carbon. Here we describe an exceptional C-rich lithology, composed of 34 modal% large (up to 0.8 mm long) crystalline graphite grains, in the Antarctic ureilite meteorite Miller Range (MIL) 091004. This C-rich lithology is embedded within a silicate region composed dominantly of granular olivine with lesser quantities of low-Ca pyroxene, and minor FeNi metal, high-Ca pyroxene, spinel, schreibersite and troilite. Petrological evidence indicates that the graphite was added after formation of the silicate region and melt depletion. Associated with graphite is localized reduction of host olivine (Fo88-89) to nearly pure forsterite (Fo99), which is associated with FeNi metal grains containing up to 11 wt.% Si. The main silicate region is typical of ureilite composition, with highly siderophile element (HSE) abundances ∼0.3 × chondrite, 187Os/188Os of 0.1260 to 0.1262 and Δ17O of -0.81 ±0.16‰. Mineral trace-element analyses reveal that the rare earth elements (REE) and the HSE are controlled by pyroxene and FeNi metal phases in the meteorite, respectively. Modelling of bulk-rock REE and HSE abundances indicates that the main silicate region experienced ∼6% silicate and >50% sulfide melt extraction, which is at the lower end of partial melt removal estimated for ureilites. Miller Range 091004 demonstrates heterogeneous distribution of carbon at centimeter scales and a limited range in Mg/(Mg+Fe) compositions of silicate grain cores, despite significant quantities of carbon. These observations demonstrate that silicate rim reduction was a rapid disequilibrium process, and came after silicate and sulfide melt removal in MIL 091004. The petrography and mineral chemistry of MIL 091004 is permissive of the graphite representing late-stage C-rich melt that pervaded silicates, or carbon that acted as a lubricant during anatexis and impact disruption in the parent body. Positive correlation of Pt/Os ratios with olivine core compositions, but a wide range of oxygen isotope compositions, indicates that ureilites formed from a compositionally heterogeneous parent body that experienced variable sulfide and metal melt-loss that is most pronounced in relatively oxidized ureilites with Δ17O between -1.5 and ∼0‰.

Day, JMD, Moynier F, Meshik AP, Pradivtseva OV, Pettit DR.  2017.  Evaporative fractionation of zinc during the first nuclear detonation. Science Advances. 3(2):e1602668.   10.1126/sciadv.1602668   Abstract

Volatile element and compound abundances vary widely in planets and were set during the earliest stages of solar system evolution. Experiments or natural analogs approximating these early conditions are limited. Using silicate glass formed from arkosic sands during the first nuclear detonation at the Trinity test site, New Mexico, we show that the isotopes of zinc were fractionated during evaporation. The green silicate glasses, termed “trinitite,” show +0.5 ± 0.1‰/atomic mass unit isotopic fractionation from ~200 m to within 10 m of ground zero of the detonation, corresponding to an α fractionation factor between 0.999 and 0.9995. These results confirm that Zn isotopic fractionation occurs through evaporation processes at high temperatures. Evidence for similar fractionations in lunar samples consequently implies a volatile-depleted bulk Moon, with evaporation occurring during a giant impact or in a magma ocean.

Day, JMD, O'Driscoll B, Strachan RA, Daly JS, Walker RJ.  2017.  Identification of mantle peridotite as a possible Iapetan ophiolite sliver in south Shetland, Scottish Caledonides. Journal of the Geological Society. 174(1):88-92.   Abstract

The Neoproterozoic Dunrossness Spilite Subgroup of south Shetland, Scotland, has been interpreted as a series of komatiitic and mafic lava flows formed in a marginal basin in response to Laurentian continental margin rifting. We show that ultramafic rocks previously identified as komatiites are depleted mantle peridotites that experienced seafloor hydrothermal alteration. The presence of positive Bouguer gravity and aeromagnetic anomalies extending from the Dunrossness Spilite Subgroup northward to the Shetland Ophiolite Complex suggests instead that these rocks may form part of an extensive ophiolite sliver, obducted during Iapetus Ocean closure in a forearc setting.

Day, JMD.  2016.  Evidence against an ancient non-chondritic mantle source for North Atlantic Igneous Province lavas. Chemical Geology. 440:91-100.   10.1016/j.chemgeo.2016.07.002   Abstract

North Atlantic Igneous Province (NAIP) lavas host olivine with the highest 3He/4He ever measured for terrestrial
igneous rocks (up to 50 RA, or 4He/3He = ~15,300). The relationship of high-3He/4He with Pb isotope compositions
close to the terrestrial geochron and 143Nd/144Nd plausibly consistentwith supra-chondritic mantle Sm/Nd
in Baffin Island and West Greenland lavas has been interpreted to reflect an ancient ‘non-chondritic’ mantle
source signature. Alternatively, assimilation of continental crustal rocks with unradiogenic Pb isotope compositions
and low 143Nd/144Nd, into magmaswith high-3He/4He, and derived from variably depleted mantle sources,
could impart similar geochemical signatures. Radiogenic and stable isotope data for NAIP lavas are consistent
with origins as melts from upper mantle sources that contain low-18O/16O recycled lithosphere and/or hydrothermally
altered crust, or that have experienced pervasive contamination by crustal gneisses. Olivines from
NAIP lavas with 3He/4He spanning from 8 to 48 RA have δ18O ranging from 3.5 to 5.5‰. These compositions
are consistent with sources of ambient mantle and low-δ18O recycled lithosphere, or with concomitant crustal
assimilation and He-loss during fractional crystallization. Limited assimilation (≤1%) of incompatible element
rich crustal gneisses with low 206Pb/204Pb and 143Nd/144Nd by melts from variably depleted mantle sources
can explain Nd-Pb isotope compositions of Baffin Island and West Greenland picrites. Icelandic lavas provide
supporting evidence that the ancestral mantle plume responsible for generating NAIP magmatism sampled variably
enriched and depletedmantle,with no evidence for ancient non-chondriticmantle sources. Pervasive crustal
contamination and partial melting of heterogeneous mantle sources, generated by plate tectonic processes, can
account for the compositions of continental flood basalts (CFB),without the requirement of a non-chondritic terrestrial
reservoir. Combined with evidence that the 142Nd/144Nd composition of the bulk silicate Earth is due to
nucleosynthetic S-process deficits in chondrite meteorites, these observations cast doubt thatNAIP lavas sampled
a non-chondritic mantle source with Sm/Nd higher than in chondrites. If short-lived radiogenic (e.g.,
146Sm-142Nd, 182Hf-182W)isotope anomalies are found in CFB, theymust either reflect assimilation of isotopically
anomalous crustal materials, or partial melting of early-formed mantle heterogeneities produced by differentiation
and late accretion.

Day, JMD.  2016.  Extraordinary World. Nature. 537:310-311.   10.1038/537310a   Abstract

The isotopic compositions of objects that formed early in the evolution of the Solar System have been found to be similar to Earth's composition — overturning notions of our planet's chemical distinctiveness.

Pringle, EA, Moynier F, Savage PS, Jackson MG, Moriera M, Day JMD.  2016.  Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of Ocean Island Basalts. Geochimica et Cosmochimica Acta. 189:282-295.   10.1016/j.gca.2016.06.008   Abstract

The study of silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to discern between different models for the origins of geochemical heterogeneities in the mantle. Relatively large (several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes relative to the dissolved Si. In contrast, only a limited range (tenths of a per mil) of Si isotope fractionation has been observed from high-temperature igneous processes. Therefore, Si isotopes may be useful as tracers for the presence of crustal material within OIB mantle source regions that experienced relatively low-temperature surface processes in a manner similar to other stable isotope systems, such as oxygen.

Characterizing the isotopic composition of the mantle is also of central importance to the use of the Si isotope system as a basis for comparisons with other planetary bodies (e.g., Moon, Mars, asteroids). Here we present the first comprehensive suite of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIB. Samples originate from ocean islands in the Pacific, Atlantic, and Indian Ocean basins and include representative endmembers for the EM-1, EM-2, and HIMU mantle components. On average, d30Si values for OIB (0.32 ± 0.09‰, 2 sd) are in general agreement with previous estimates for the d30Si value of Bulk Silicate Earth (0.29 ± 0.07‰, 2 sd; Savage et al., 2014). Nonetheless, some small systematic variations are present; specifically, most HIMU-type (Mangaia; Cape Verde; La Palma, Canary Islands) and Iceland OIB are enriched in the lighter isotopes of Si (d30Si values lower than MORB), consistent with recycled altered oceanic crust and lithospheric mantle in their mantle sources.

Peters, BJ, Day JMD, Taylor LA.  2016.  Early mantle heterogeneities in the Réunion hotspot source inferred from highly siderophile elements in cumulate xenoliths. Earth and Planetary Science Letters. 448:150-160.   10.1016/j.epsl.2016.05.015   Abstract

Ultramafic cumulate rocks form during intrusive crystallization of high-MgO magmas, incorporating relatively high abundances of compatible elements, including Cr and Ni, and high abundances of the highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, Re). Here, we utilize a suite of cumulate xenoliths from Piton de la Fournaise, La Réunion (Indian Ocean), to examine the mantle source composition of the Réunion hotspot using HSE abundances and Os isotopes. Dunite and wherlite xenoliths and associated lavas from the Piton de la Fournaise volcanic complex span a range of MgO contents (46 to 7 wt.%), yet exhibit remarkably homogeneous 187Os/188Os (0.1324±0.0014, 2σ), representing the Os-isotopic composition of Réunion hotspot primary melts. A significant fraction of the xenoliths also have primitive upper-mantle (PUM) normalized HSE patterns with elevated Ru and Pd (PUM-normalized Ru/Ir and Pd/Ir of 0.8–6.3 and 0.2–7.2, respectively). These patterns are not artifacts of alteration, fractional crystallization, or partial melting processes, but rather require a primary magma with similar relative enrichments. Some highly olivine-phyric (>40 modal percent olivine) Piton de la Fournaise lavas also preserve these relative Ru and Pd enrichments, while others preserve a pattern that is likely related to sulfur saturation in evolved melts.

The estimate of HSE abundances in PUM indicates high Ru/Ir and Pd/Pt values relative to carbonaceous, ordinary and enstatite chondrite meteorite groups. Thus, the existence of cumulate rocks with even more fractionated HSE patterns relative to PUM suggests that the Réunion hotspot samples a yet unrecognized mantle source. The origin of fractionated HSE patterns in Réunion melts may arise from sampling of a mantle source that experienced limited late accretion (<0.2% by mass) compared with PUM (0.5–0.8%), possibly involving impactors that were distinct from present-day chondrites, or limited core–mantle interactions. Given the remarkably homogeneous Os, Pb, and noble-gas isotopic signatures of Réunion, which plot near the convergence point of isotopic data for many hotspots, such a conclusion provides evidence for an early differentiated and subsequently isolated mantle domain that may be partially sampled by some ocean island basalts.

Day, JMD.  2016.  Siderophile Elements. Encyclopedia of Geochemistry. ( White WM, Ed.).: Springer   10.1007/978-3-319-39193-9_234-1  
Day, JMD, Qiu L, Ash RD, McDonough WF, Teng F-Z, Rudnick RL, Taylor LA.  2016.  Evidence for high-temperature fractionation of lithium isotopes during differentiation of the Moon. Meteoritics and Planetary Science. 51(6):1046-1062.   10.1111/maps.12643   Abstract

Lithium isotope and abundance data are reported for Apollo 15 and 17 mare basalts and the LaPaz low-Ti mare basalt meteorites, along with lithium isotope data for carbonaceous, ordinary, and enstatite chondrites, and chondrules from the Allende CV3 meteorite. Apollo 15 low-Ti mare basalts have lower Li contents and lower δ7Li (3.8 ± 1.2‰; all uncertainties are 2 standard deviations) than Apollo 17 high-Ti mare basalts (δ7Li = 5.2 ± 1.2‰), with evolved LaPaz mare basalts having high Li contents, but similar low δ7Li (3.7 ± 0.5‰) to Apollo 15 mare basalts. In low-Ti mare basalt 15555, the highest concentrations of Li occur in late-stage tridymite (>20 ppm) and plagioclase (11 ± 3 ppm), with olivine (6.1 ± 3.8 ppm), pyroxene (4.2 ± 1.6 ppm), and ilmenite (0.8 ± 0.7 ppm) having lower Li concentrations. Values of δ7Li in low- and high-Ti mare basalt sources broadly correlate negatively with 18O/16O and positively with 56Fe/54Fe (low-Ti: δ7Li ≤4‰; δ56Fe ≤0.04‰; δ18O ≥5.7‰; high-Ti: δ7Li >6‰; δ56Fe >0.18‰; δ18O <5.4‰). Lithium does not appear to have acted as a volatile element during planetary formation, with subequal Li contents in mare basalts compared with terrestrial, martian, or vestan basaltic rocks. Observed Li isotopic fractionations in mare basalts can potentially be explained through large-degree, high-temperature igneous differentiation of their source regions. Progressive magma ocean crystallization led to enrichment in Li and δ7Li in late-stage liquids, probably as a consequence of preferential retention of 7Li and Li in the melt relative to crystallizing solids. Lithium isotopic fractionation has not been observed during extensive differentiation in terrestrial magmatic systems and may only be recognizable during extensive planetary magmatic differentiation under volatile-poor conditions, as expected for the lunar magma ocean. Our new analyses of chondrites show that they have δ7Li ranging between −2.5‰ and 4‰. The higher δ7Li in planetary basalts than in the compilation of chondrites (2.1 ± 1.3‰) demonstrates that differentiated planetary basalts are, on average, isotopically heavier than most chondrites.