Iron isotope fractionation during sulfide-rich felsic partial melting in early planetesimals

Wang, K, Day JMD, Korotev RL, Zeigler RA, Moynier F.  2014.  Iron isotope fractionation during sulfide-rich felsic partial melting in early planetesimals. Earth and Planetary Science Letters. 392:124-132.


New Fe isotope data of feldspar-rich meteorites Graves Nunataks 06128 and 06129 (GRA 06128/9) reveal that they are the only known examples of crustal materials with isotopically light Fe isotope compositions (View the MathML source; δ 56Fe is defined as the per mille deviation of a sample's 56Fe/54Fe ratio from the IRMM-014 standard) in the Solar System. In contrast, associated brachinites, as well as brachinite-like achondrites, have Fe isotope compositions (View the MathML source) that are isotopically similar to carbonaceous chondrites and the bulk terrestrial mantle. In order to understand the cause of Fe isotope variations in the GRA 06128/9 and brachinite parent body, we also report the Fe isotope compositions of metal, silicate and sulfide fractions from three ordinary chondrites (Semarkona, Kernouve, Saint-Séverin). Metals from ordinary chondrites are enriched in the heavier isotopes of Fe (average View the MathML source), sulfide fractions are enriched in the lighter isotopes of Fe (average View the MathML source), and the δ 56Fe values of the silicates are coincident with that of the bulk rock (average View the MathML source).

The enrichment of light isotopes of Fe isotopes in GRA 06128/9 is consistent with preferential melting of sulfides in precursor chondritic source materials leading to the formation of Fe–S-rich felsic melts. Conceptual models show that melt generation to form a GRA 06128/9 parental melt occurred prior to the onset of higher-temperature basaltic melting (<1200 °C) in a volatile-rich precursor and led to the generation of buoyant felsic melt with a strong Fe–S signature. These models not only reveal the origin of enrichment in light isotopes of Fe for GRA 06128/9, but are also consistent with petrological and geochemical observations, experimental studies for the origin of Fe–S-rich felsic melts, and for the cessation of early melting on some asteroidal parent bodies because of the effective removal of the major radioactive heat-source, 26Al. The mode of origin for GRA 06128/9 contrasts strongly with crust formation on Earth, the Moon, Mars and other asteroids, where mantle differentiation and/or oxygen activity are the major controls on crustal Fe isotope compositions.