Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Asc)]
2016
MacKinnon, JA, Nash JD, Alford MH, Lucas AJ, Mickett JB, Shroyer EL, Waterhouse AF, Tandon A, Sengupta D, Mahadevan A, Ravichandran M, Pinkel R, Rudnick DL, Whalen CB, Alberty MS, Lekha JS, Fine EC, Chaudhuri D, Wagner GL.  2016.  A tale of two spicy seas. Oceanography. 29:50-61.   10.5670/oceanog.2016.38   AbstractWebsite

Upper-ocean turbulent heat fluxes in the Bay of Bengal and the Arctic Ocean drive regional monsoons and sea ice melt, respectively, important issues of societal interest. In both cases, accurate prediction of these heat transports depends on proper representation of the small-scale structure of vertical stratification, which in turn is created by a host of complex submesoscale processes. Though half a world apart and having dramatically different temperatures, there are surprising similarities between the two: both have (1) very fresh surface layers that are largely decoupled from the ocean below by a sharp halocline barrier, (2) evidence of interleaving lateral and vertical gradients that set upper-ocean stratification, and (3) vertical turbulent heat fluxes within the upper ocean that respond sensitively to these structures. However, there are clear differences in each ocean's horizontal scales of variability, suggesting that despite similar background states, the sharpening and evolution of mesoscale gradients at convergence zones plays out quite differently. Here, we conduct a qualitative and statistical comparison of these two seas, with the goal of bringing to light fundamental underlying dynamics that will hopefully improve the accuracy of forecast models in both parts of the world.

2018
Ramachandran, S, Tandon A, MacKinnon J, Lucas AJ, Pinkel R, Waterhouse AF, Nash J, Shroyer E, Mahadevan A, Weller RA, Farrar JT.  2018.  Submesoscale processes at shallow salinity fronts in the Bay of Bengal: Observations during the winter monsoon. Journal of Physical Oceanography. 48:479-509.   10.1175/jpo-d-16-0283.1   AbstractWebsite

Lateral submesoscale processes and their influence on vertical stratification at shallow salinity fronts in the central Bay of Bengal during the winter monsoon are explored using high-resolution data from a cruise in November 2013. The observations are from a radiator survey centered at a salinity-controlled density front, embedded in a zone of moderate mesoscale strain (0.15 times the Coriolis parameter) and forced by winds with a downfront orientation. Below a thin mixed layer, often <= 10 m, the analysis shows several dynamical signatures indicative of submesoscale processes: (i) negative Ertel potential vorticity (PV); (ii) low-PV anomalies with O(1-10) km lateral extent, where the vorticity estimated on isopycnals and the isopycnal thickness are tightly coupled, varying in lockstep to yield low PV; (iii) flow conditions susceptible to forced symmetric instability (FSI) or bearing the imprint of earlier FSI events; (iv) negative lateral gradients in the absolute momentum field (inertial instability); and (v) strong contribution from differential sheared advection at O(1) km scales to the growth rate of the depth-averaged stratification. The findings here show one-dimensional vertical processes alone cannot explain the vertical stratification and its lateral variability over O(1-10) km scales at the radiator survey.