Publications

Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Lucas, AJ, Nash JD, Pinkel R, MacKinnon JA, Tandon A, Mahadevan A, Omand MM, Freilich M, Sengupta D, Ravichandran M, Le Boyer A.  2016.  Adrift upon a salinity-stratified sea: A view of upper-ocean processes in the Bay of Bengal during the southwest monsoon. Oceanography. 29:134-145.   10.5670/oceanog.2016.46   AbstractWebsite

The structure and variability of upper-ocean properties in the Bay of Bengal (BoB) modulate air-sea interactions, which profoundly influence the pattern and intensity of monsoonal precipitation across the Indian subcontinent. In turn, the bay receives a massive amount of freshwater through river input at its boundaries and from heavy local rainfall, leading to a salinity-stratified surface ocean and shallow mixed layers. Small-scale oceanographic processes that drive variability in near-surface BoB waters complicate the tight coupling between ocean and atmosphere implicit in this seasonal feedback. Unraveling these ocean dynamics and their impact on air-sea interactions is critical to improving the forecasting of intraseasonal variability in the southwest monsoon. To that end, we deployed a wave-powered, rapidly profiling system capable of measuring the structure and variability of the upper 100 m of the BoB. The evolution of upper-ocean structure along the trajectory of the instrument's roughly two-week drift, along with direct estimates of vertical fluxes of salt and heat, permit assessment of the contributions of various phenomena to temporal and spatial variability in the surface mixed layer depth. Further, these observations suggest that the particular "barrier-layer" stratification found in the BoB may decrease the influence of the wind on mixing processes in the interior, thus isolating the upper ocean from the interior below, and tightening its coupling to the atmosphere above.

Salehipour, H, Peltier WR, Whalen CB, MacKinnon JA.  2016.  A new characterization of the turbulent diapycnal diffusivities of mass and momentum in the ocean. Geophysical Research Letters. 43:3370-3379.   10.1002/2016gl068184   AbstractWebsite

The diapycnal diffusivity of mass supported by turbulent events in the ocean interior plays a fundamental role in controlling the global overturning circulation. The conventional representation of this diffusivity, due to Osborn (1980), assumes a constant mixing efficiency. We replace this methodology by a generalized-Osborn formula which involves a mixing efficiency that varies nonmonotonically with at least two nondimensional variables. Using these two variables, we propose dynamic parameterizations for mixing efficiency and turbulent Prandtl number (the latter quantifies the ratio of momentum to mass diapycnal diffusivities) based on the first synthesis of an extensive direct numerical simulation of inhomogeneously stratified shear-induced turbulence. Data from Argo floats are employed to demonstrate the extent of the spatial and statistical variability to be expected in both the diapycnal diffusivities of mass and momentum. We therefore suggest that previous estimates of these important characteristics of the global ocean require reconsideration.

Musgrave, RC, MacKinnon JA, Pinkel R, Waterhouse AF, Nash J.  2016.  Tidally driven processes leading to near-field turbulence in a channel at the crest of the Mendocino Escarpment*. Journal of Physical Oceanography. 46:1137-1155.   10.1175/jpo-d-15-0021.1   AbstractWebsite

In situ observations of tidally driven turbulence were obtained in a small channel that transects the crest of the Mendocino Ridge, a site of mixed (diurnal and semidiurnal) tides. Diurnal tides are subinertial at this latitude, and once per day a trapped tide leads to large flows through the channel giving rise to tidal excursion lengths comparable to the width of the ridge crest. During these times, energetic turbulence is observed in the channel, with overturns spanning almost half of the full water depth. A high-resolution, nonhydrostatic, 2.5-dimensional simulation is used to interpret the observations in terms of the advection of a breaking tidal lee wave that extends from the ridge crest to the surface and the subsequent development of a hydraulic jump on the flanks of the ridge. Modeled dissipation rates show that turbulence is strongest on the flanks of the ridge and that local dissipation accounts for 28% of the energy converted from the barotropic tide into baroclinic motion.

2015
Alford, MH, Peacock T, MacKinnon JA, Nash JD, Buijsman MC, Centuroni LR, Chao SY, Chang MH, Farmer DM, Fringer OB, Fu KH, Gallacher PC, Graber HC, Helfrich KR, Jachec SM, Jackson CR, Klymak JM, Ko DS, Jan S, Johnston TMS, Legg S, Lee IH, Lien RC, Mercier MJ, Moum JN, Musgrave R, Park JH, Pickering AI, Pinkel R, Rainville L, Ramp SR, Rudnick DL, Sarkar S, Scotti A, Simmons HL, St Laurent LC, Venayagamoorthy SK, Hwang Y, Wang J, Yang YJ, Paluszkiewicz T, Tang TY.  2015.  The formation and fate of internal waves in the South China Sea. Nature. 521:65-U381.   10.1038/nature14399   AbstractWebsite

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis(1), sediment and pollutant transport(2) and acoustic transmission(3); they also pose hazards for man-made structures in the ocean(4). Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking(5), making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects(6,7). For over a decade, studies(8-11) have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

2014
Buijsman, MC, Klymak JM, Legg S, Alford MH, Farmer D, MacKinnon JA, Nash JD, Park JH, Pickering A, Simmons H.  2014.  Three-dimensional double-ridge internal tide resonance in Luzon Strait. Journal of Physical Oceanography. 44:850-869.   10.1175/jpo-d-13-024.1   AbstractWebsite

The three-dimensional (3D) double-ridge internal tide interference in the Luzon Strait in the South China Sea is examined by comparing 3D and two-dimensional (2D) realistic simulations. Both the 3D simulations and observations indicate the presence of 3D first-mode (semi)diurnal standing waves in the 3.6-km-deep trench in the strait. As in an earlier 2D study, barotropic-to-baroclinic energy conversion, flux divergence, and dissipation are greatly enhanced when semidiurnal tides dominate relative to periods dominated by diurnal tides. The resonance in the 3D simulation is several times stronger than in the 2D simulations for the central strait. Idealized experiments indicate that, in addition to ridge height, the resonance is only a function of separation distance and not of the along-ridge length; that is, the enhanced resonance in 3D is not caused by 3D standing waves or basin modes. Instead, the difference in resonance between the 2D and 3D simulations is attributed to the topographic blocking of the barotropic flow by the 3D ridges, affecting wave generation, and a more constructive phasing between the remotely generated internal waves, arriving under oblique angles, and the barotropic tide. Most of the resonance occurs for the first mode. The contribution of the higher modes is reduced because of 3D radiation, multiple generation sites, scattering, and a rapid decay in amplitude away from the ridge.

2011
Alford, MH, MacKinnon JA, Nash JD, Simmons H, Pickering A, Klymak JM, Pinkel R, Sun O, Rainville L, Musgrave R, Beitzel T, Fu KH, Lu CW.  2011.  Energy Flux and Dissipation in Luzon Strait: Two Tales of Two Ridges. Journal of Physical Oceanography. 41:2211-2222.   10.1175/jpo-d-11-073.1   AbstractWebsite

Internal tide generation, propagation, and dissipation are investigated in Luzon Strait, a system of two quasi-parallel ridges situated between Taiwan and the Philippines. Two profiling moorings deployed for about 20 days and a set of nineteen 36-h lowered ADCP-CTD time series stations allowed separate measurement of diurnal and semidiurnal internal tide signals. Measurements were concentrated on a northern line, where the ridge spacing was approximately equal to the mode-1 wavelength for semidiurnal motions, and a southern line, where the spacing was approximately two-thirds that. The authors contrast the two sites to emphasize the potential importance of resonance between generation sites. Throughout Luzon Strait, baroclinic energy, energy fluxes, and turbulent dissipation were some of the strongest ever measured. Peak-to-peak baroclinic velocity and vertical displacements often exceeded 2 m s(-1) and 300 m, respectively. Energy fluxes exceeding 60 kW m(-1) were measured at spring tide at the western end of the southern line. On the northern line, where the western ridge generates appreciable eastward-moving signals, net energy flux between the ridges was much smaller, exhibiting a nearly standing wave pattern. Overturns tens to hundreds of meters high were observed at almost all stations. Associated dissipation was elevated in the bottom 500-1000 m but was strongest by far atop the western ridge on the northern line, where >500-m overturns resulted in dissipation exceeding 2 x 10(-6) W kg(-1) (implying diapycnal diffusivity K(rho) > 0.2 m(2) s(-1)). Integrated dissipation at this location is comparable to conversion and flux divergence terms in the energy budget. The authors speculate that resonance between the two ridges may partly explain the energetic motions and heightened dissipation.

2008
Polton, JA, Smith JA, MacKinnon JA, Tejada-Martinez AE.  2008.  Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer. Geophysical Research Letters. 35   10.1029/2008gl033856   AbstractWebsite

High-frequency internal waves generated by Langmuir motions over stratified water may be an important source of turbulent mixing below the surface mixed layer. Large eddy simulations of a developing mixed layer and inertial current are employed to investigate this phenomena. Uniform surface wind stress and parallel Stokes drift wave forcing rapidly establishes a turbulent mixed-layer flow, which ( as the inertial motion veers off the wind) generates high-frequency internal waves in the stratified fluid below. The internal waves evolve such that their vector phase velocity matches the depth-averaged mixed-layer velocity that rotates as an inertial oscillation. The internal waves drain energy and momentum from the mixed layer on decay time-scales that are comparable to those of near-inertial oscillations. The high-frequency waves, which are likely to be trapped in the transition layer, may significantly contribute to mixing there and thus provide a potentially important energy sink for mixed-layer inertial motions.