Export 38 results:
Sort by: Author Title Type [ Year  (Desc)]
MacKinnon, JA, Alford MH, Ansong JK, Arbic BK, Barna A, Briegleb BP, Bryan FO, Buijsman MC, Chassignet EP, Danabasoglu G, Diggs S, Griffies SM, Hallberg RW, Jayne SR, Jochum M, Klymak JM, Kunze E, Large WG, Legg S, Mater B, Melet AV, Merchant LM, Musgrave R, Nash JD, Norton NJ, Pickering A, Pinkel R, Polzin K, Simmons HL, Laurent LSC, Sun OM, Trossman DS, Waterhouse AF, Whalen CB, Zhao Z.  2017.  Climate process team on internal-wave driven ocean mixing. Bulletin of the American Meteorological Society.   10.1175/bams-d-16-0030.1   Abstract

Recent advances in our understanding of internal-wave driven turbulent mixing in the ocean interior are summarized. New parameterizations for global climate ocean models, and their climate impacts, are introduced.Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last five years and under the auspices of US CLIVAR, a NSF- and NOAA-supported Climate Process Team has been engaged in developing, implementing and testing dynamics-based parameterizations for internal-wave driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here we review recent progress, describe the tools developed, and discuss future directions.

Klymak, JM, Simmons HL, Braznikov D, Kelly S, MacKinnon JA, Alford MH, Pinkel R, Nash JD.  2016.  Reflection of linear internal tides from realistic topography: The Tasman continental slope. Journal of Physical Oceanography. 46:3321-3337.   10.1175/jpo-d-16-0061.1   AbstractWebsite

The reflection of a low-mode internal tide on the Tasman continental slope is investigated using simulations of realistic and simplified topographies. The slope is supercritical to the internal tide, which should predict a large fraction of the energy reflected. However, the response to the slope is complicated by a number of factors: the incoming beam is confined laterally, it impacts the slope at an angle, there is a roughly cylindrical rise directly offshore of the slope, and a leaky slope-mode wave is excited. These effects are isolated in simulations that simplify the topography. To separate the incident from the reflected signal, a response without the reflector is subtracted from the total response to arrive at a reflected signal. The real slope reflects approximately 65% of themode-1 internal tide asmode 1, less than two-dimensional linear calculations predict, because of the three-dimensional concavity of the topography. It is also less than recent glider estimates, likely as a result of along-slope inhomogeneity. The inhomogeneity of the response comes from the Tasman Rise that diffracts the incoming tidal beam into two beams: one focused along beam and one diffracted to the north. Along-slope inhomogeneity is enhanced by a partially trapped, superinertial slope wave that propagates along the continental slope, locally removing energy from the deep-water internal tide and reradiating it into the deep water farther north. This wave is present even in a simplified, straight slope topography; its character can be predicted from linear resonance theory, and it represents up to 30% of the local energy budget.

Wijesekera, HW, Shroyer E, Tandon A, Ravichandran M, Sengupta D, Jinadasa SUP, Fernando HJS, Agrawal N, Arulananthan K, Bhat GS, Baumgartner M, Buckley J, Centurioni L, Conry P, Farrar TJ, Gordon AL, Hormann V, Jarosz E, Jensen TG, Johnston S, Lankhorst M, Lee CM, Leo LS, Lozovatsky I, Lucas AJ, MacKinnon J, Mahadevan A, Nash J, Omand MM, Pham H, Pinkel R, Rainville L, Ramachandran S, Rudnick DL, Sarkar S, Send U, Sharma R, Simmons H, Stafford KM, Laurent LS, Venayagamoorthy K, Venkatesan R, Teague WJ, Wang DW, Waterhouse AF, Weller R, Whalen CB.  2016.  ASIRI: An Ocean–Atmosphere Initiative for Bay of Bengal. Bulletin of the American Meteorological Society. 97:1859-1884.   10.1175/bams-d-14-00197.1   Abstract

Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.

Lucas, AJ, Nash JD, Pinkel R, MacKinnon JA, Tandon A, Mahadevan A, Omand MM, Freilich M, Sengupta D, Ravichandran M, Le Boyer A.  2016.  Adrift upon a salinity-stratified sea: A view of upper-ocean processes in the Bay of Bengal during the southwest monsoon. Oceanography. 29:134-145.   10.5670/oceanog.2016.46   AbstractWebsite

The structure and variability of upper-ocean properties in the Bay of Bengal (BoB) modulate air-sea interactions, which profoundly influence the pattern and intensity of monsoonal precipitation across the Indian subcontinent. In turn, the bay receives a massive amount of freshwater through river input at its boundaries and from heavy local rainfall, leading to a salinity-stratified surface ocean and shallow mixed layers. Small-scale oceanographic processes that drive variability in near-surface BoB waters complicate the tight coupling between ocean and atmosphere implicit in this seasonal feedback. Unraveling these ocean dynamics and their impact on air-sea interactions is critical to improving the forecasting of intraseasonal variability in the southwest monsoon. To that end, we deployed a wave-powered, rapidly profiling system capable of measuring the structure and variability of the upper 100 m of the BoB. The evolution of upper-ocean structure along the trajectory of the instrument's roughly two-week drift, along with direct estimates of vertical fluxes of salt and heat, permit assessment of the contributions of various phenomena to temporal and spatial variability in the surface mixed layer depth. Further, these observations suggest that the particular "barrier-layer" stratification found in the BoB may decrease the influence of the wind on mixing processes in the interior, thus isolating the upper ocean from the interior below, and tightening its coupling to the atmosphere above.

Jinadasa, SUP, Lozovatsky I, Planella-Morato J, Nash JD, MacKinnon JA, Lucas AJ, Wijesekera HW, Fernando HJS.  2016.  Ocean turbulence and mixing around Sri Lanka and in adjacent waters of the northern Bay of Bengal. Oceanography. 29:170-179.   10.5670/oceanog.2016.49   AbstractWebsite

As a part of the US Air-Sea Interactions Regional Initiative, the first extensive set of turbulent kinetic energy dissipation rate (epsilon) measurements from microstructure profilers were obtained in the Bay of Bengal (BoB) and around Sri Lanka during 2013-2015. The observations span almost 1,200 km meridionally, and capture the dynamics associated with a variety of mesoscale and submesoscale features. High freshwater input in the northern part of the basin leads to regions of intense near-surface stratification, which become weaker moving south. The thin layers trap mechanical energy input from the atmosphere, often confining turbulence to the surface boundary layer. These thin layers can form shallow fronts, which at times resemble turbulent gravity currents (Sarkar et al., 2016, in this issue), and are associated with high levels of mixing. Away from the local frontal zones, turbulence in the surface low-salinity layer appears to be decoupled from the underlying pycnocline, where turbulence occurs only in rare and sporadic breaking events. A striking feature common to all of the data acquired is a dearth of turbulent mixing at depth, a condition that appears to be pervasive throughout the basin except during the passage of tropical storms. It is likely that the strong near-surface stratification effectively isolates the deeper water column from mechanical penetration of atmospheric energy.

Chowdary, JS, Srinivas G, Fousiya TS, Parekh A, Gnanaseelan C, Seo H, MacKinnon JA.  2016.  Representation of Bay of Bengal upper-ocean salinity in general circulation models. Oceanography. 29:38-49.   10.5670/oceanog.2016.37   AbstractWebsite

The Bay of Bengal (BoB) upper-ocean salinity is examined in the National Centers for Environmental Prediction-Climate Forecasting System version 2 (CFSv2) coupled model, Modular Ocean Model version 5 (MOM5), and Indian National Centre for Ocean Information Services Global Ocean Data Assimilation System (INC-GODAS). CFSv2 displays a large positive salinity bias with respect to World Ocean Atlas 2013 in the upper 40 m of the water column. The prescribed annual mean river discharge and excess evaporation are the main contributors to the positive bias in surface salinity. Overestimation of salinity advection also contributes to the high surface salinity in the model during summer. The surface salinity bias in MOM5 is smaller than in CFSv2 due to prescribed local freshwater flux and seasonally varying river discharge. However, the bias is higher around 70 m in summer and 40 m in fall. This bias is attributed to excessive vertical mixing in the upper ocean. Despite the fact that representation of salinity in INC-GODAS is more realistic due to data assimilation, the vertical mixing scheme still imposes systematic errors. The small-scale processes that control oceanographic turbulence are not adequately resolved in any of these models. Better parameterizations based on dedicated observational programs may help improve freshwater representation in regional and global models.

MacKinnon, JA, Nash JD, Alford MH, Lucas AJ, Mickett JB, Shroyer EL, Waterhouse AF, Tandon A, Sengupta D, Mahadevan A, Ravichandran M, Pinkel R, Rudnick DL, Whalen CB, Alberty MS, Lekha JS, Fine EC, Chaudhuri D, Wagner GL.  2016.  A tale of two spicy seas. Oceanography. 29:50-61.   10.5670/oceanog.2016.38   AbstractWebsite

Upper-ocean turbulent heat fluxes in the Bay of Bengal and the Arctic Ocean drive regional monsoons and sea ice melt, respectively, important issues of societal interest. In both cases, accurate prediction of these heat transports depends on proper representation of the small-scale structure of vertical stratification, which in turn is created by a host of complex submesoscale processes. Though half a world apart and having dramatically different temperatures, there are surprising similarities between the two: both have (1) very fresh surface layers that are largely decoupled from the ocean below by a sharp halocline barrier, (2) evidence of interleaving lateral and vertical gradients that set upper-ocean stratification, and (3) vertical turbulent heat fluxes within the upper ocean that respond sensitively to these structures. However, there are clear differences in each ocean's horizontal scales of variability, suggesting that despite similar background states, the sharpening and evolution of mesoscale gradients at convergence zones plays out quite differently. Here, we conduct a qualitative and statistical comparison of these two seas, with the goal of bringing to light fundamental underlying dynamics that will hopefully improve the accuracy of forecast models in both parts of the world.

Salehipour, H, Peltier WR, Whalen CB, MacKinnon JA.  2016.  A new characterization of the turbulent diapycnal diffusivities of mass and momentum in the ocean. Geophysical Research Letters. 43:3370-3379.   10.1002/2016gl068184   AbstractWebsite

The diapycnal diffusivity of mass supported by turbulent events in the ocean interior plays a fundamental role in controlling the global overturning circulation. The conventional representation of this diffusivity, due to Osborn (1980), assumes a constant mixing efficiency. We replace this methodology by a generalized-Osborn formula which involves a mixing efficiency that varies nonmonotonically with at least two nondimensional variables. Using these two variables, we propose dynamic parameterizations for mixing efficiency and turbulent Prandtl number (the latter quantifies the ratio of momentum to mass diapycnal diffusivities) based on the first synthesis of an extensive direct numerical simulation of inhomogeneously stratified shear-induced turbulence. Data from Argo floats are employed to demonstrate the extent of the spatial and statistical variability to be expected in both the diapycnal diffusivities of mass and momentum. We therefore suggest that previous estimates of these important characteristics of the global ocean require reconsideration.

Musgrave, RC, MacKinnon JA, Pinkel R, Waterhouse AF, Nash J.  2016.  Tidally driven processes leading to near-field turbulence in a channel at the crest of the Mendocino Escarpment*. Journal of Physical Oceanography. 46:1137-1155.   10.1175/jpo-d-15-0021.1   AbstractWebsite

In situ observations of tidally driven turbulence were obtained in a small channel that transects the crest of the Mendocino Ridge, a site of mixed (diurnal and semidiurnal) tides. Diurnal tides are subinertial at this latitude, and once per day a trapped tide leads to large flows through the channel giving rise to tidal excursion lengths comparable to the width of the ridge crest. During these times, energetic turbulence is observed in the channel, with overturns spanning almost half of the full water depth. A high-resolution, nonhydrostatic, 2.5-dimensional simulation is used to interpret the observations in terms of the advection of a breaking tidal lee wave that extends from the ridge crest to the surface and the subsequent development of a hydraulic jump on the flanks of the ridge. Modeled dissipation rates show that turbulence is strongest on the flanks of the ridge and that local dissipation accounts for 28% of the energy converted from the barotropic tide into baroclinic motion.

Alford, MH, MacKinnon JA, Simmons HL, Nash JD.  2016.  Near-inertial internal gravity waves in the ocean. Annual Review of Marine Science, Vol 8. 8( Carlson CA, Giovannoni SJ, Eds.).:95-123., Palo Alto: Annual Reviews   10.1146/annurev-marine-010814-015746   Abstract

We review the physics of near-inertial waves (NIWs) in the ocean and the observations, theory, and models that have provided our present knowledge. NIWs appear nearly everywhere in the ocean as a spectral peak at and just above the local inertial period f, and the longest vertical wavelengths can propagate at least hundreds of kilometers toward the equator from their source regions; shorter vertical wavelengths do not travel as far and do not contain as much energy, but lead to turbulent mixing owing to their high shear. NIWs are generated by a variety of mechanisms, including the wind, nonlinear interactions with waves of other frequencies, lee waves over bottom topography, and geostrophic adjustment; the partition among these is not known, although the wind is likely the most important. NIWs likely interact strongly with mesoscale and submesoscale motions, in ways that are just beginning to be understood.

Alford, MH, Peacock T, MacKinnon JA, Nash JD, Buijsman MC, Centuroni LR, Chao SY, Chang MH, Farmer DM, Fringer OB, Fu KH, Gallacher PC, Graber HC, Helfrich KR, Jachec SM, Jackson CR, Klymak JM, Ko DS, Jan S, Johnston TMS, Legg S, Lee IH, Lien RC, Mercier MJ, Moum JN, Musgrave R, Park JH, Pickering AI, Pinkel R, Rainville L, Ramp SR, Rudnick DL, Sarkar S, Scotti A, Simmons HL, St Laurent LC, Venayagamoorthy SK, Hwang Y, Wang J, Yang YJ, Paluszkiewicz T, Tang TY.  2015.  The formation and fate of internal waves in the South China Sea. Nature. 521:65-U381.   10.1038/nature14399   AbstractWebsite

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis(1), sediment and pollutant transport(2) and acoustic transmission(3); they also pose hazards for man-made structures in the ocean(4). Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking(5), making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects(6,7). For over a decade, studies(8-11) have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

Whalen, CB, MacKinnon JA, Talley LD, Waterhouse AF.  2015.  Estimating the mean diapycnal mixing using a finescale strain parameterization. Journal of Physical Oceanography. 45:1174-1188.   10.1175/jpo-d-14-0167.1   AbstractWebsite

Finescale methods are currently being applied to estimate the mean turbulent dissipation rate and diffusivity on regional and global scales. This study evaluates finescale estimates derived from isopycnal strain by comparing them with average microstructure profiles from six diverse environments including the equator, above ridges, near seamounts, and in strong currents. The finescale strain estimates are derived from at least 10 nearby Argo profiles (generally <60 km distant) with no temporal restrictions, including measurements separated by seasons or decades. The absence of temporal limits is reasonable in these cases, since the authors find the dissipation rate is steady over seasonal time scales at the latitudes being considered (0 degrees-30 degrees and 40 degrees-50 degrees). In contrast, a seasonal cycle of a factor of 2-5 in the upper 1000m is found under storm tracks (30 degrees-40 degrees) in both hemispheres. Agreement between the mean dissipation rate calculated using Argo profiles and mean from microstructure profiles is within a factor of 2-3 for 96% of the comparisons. This is both congruous with the physical scaling underlying the finescale parameterization and indicates that the method is effective for estimating the regional mean dissipation rates in the open ocean.

Klymak, JM, Crawford W, Alford MH, MacKinnon JA, Pinkel R.  2015.  Along-isopycnal variability of spice in the North Pacific. Journal of Geophysical Research-Oceans. 120:2287-2307.   10.1002/2013jc009421   AbstractWebsite

Two hydrographic surveys in the Gulf of Alaska and the North Pacific subtropical gyre are presented. Both surveys are roughly perpendicular to lateral temperature gradients, and were collected in the summer when there was a shallow mixed layer and a seasonal thermocline. Isopycnal displacements and horizontal velocities are dominated by internal waves. Spice anomalies along isopycnals are examined to diagnose lateral stirring mechanisms. The spectra of spice anomaly gradients along near-surface isopycnals roughly follow power laws of similar to k(X)(0.6+/-0.2) (variance spectra power laws similar to k(X)(1.4+/-0.2)), and in most cases, the spectra become redder at depth. The near-surface spectra are possibly consistent with the predictions of quasi-geostrophic turbulence theory (when surface buoyancy effects are accounted for), but the spectra at depth are inconsistent with any quasi-geostrophic theory. Probability distributions of spice gradients exhibit a large peak at low gradients and long tails for large gradients, symptomatic of fronts. Vertical coherence of the spice signal falls off with a decorrelation depth scale that has a maximum of about 80 m at 100 km wavelengths and depends on horizontal wavelength with a power law of approximately k(x)(-1/2). Lateral decorrelation length scales are 20-40 km, close to the baroclinic Rossby radius. Lateral stirring occurs over large scales, with average lateral displacements of about 200 km in the upper 75 m, decreasing to 100 km at greater depths. The depth variation of the statistics indicates that time history of tracer stirring on each isopycnal is important, or that there are unconsidered depth-dependent stirring mechanisms.

Waterhouse, AF, MacKinnon JA, Nash JD, Alford MH, Kunze E, Simmons HL, Polzin KL, St Laurent LC, Sun OM, Pinkel R, Talley LD, Whalen CB, Huussen TN, Carter GS, Fer I, Waterman S, Garabato ACN, Sanford TB, Lee CM.  2014.  Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. Journal of Physical Oceanography. 44:1854-1872.   10.1175/jpo-d-13-0104.1   AbstractWebsite

The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from(i) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10(-4))m(2) s(-1) and above 1000-m depth is O(10(-5))m(2) s(-1). The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depth-integrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins.

Buijsman, MC, Klymak JM, Legg S, Alford MH, Farmer D, MacKinnon JA, Nash JD, Park JH, Pickering A, Simmons H.  2014.  Three-dimensional double-ridge internal tide resonance in Luzon Strait. Journal of Physical Oceanography. 44:850-869.   10.1175/jpo-d-13-024.1   AbstractWebsite

The three-dimensional (3D) double-ridge internal tide interference in the Luzon Strait in the South China Sea is examined by comparing 3D and two-dimensional (2D) realistic simulations. Both the 3D simulations and observations indicate the presence of 3D first-mode (semi)diurnal standing waves in the 3.6-km-deep trench in the strait. As in an earlier 2D study, barotropic-to-baroclinic energy conversion, flux divergence, and dissipation are greatly enhanced when semidiurnal tides dominate relative to periods dominated by diurnal tides. The resonance in the 3D simulation is several times stronger than in the 2D simulations for the central strait. Idealized experiments indicate that, in addition to ridge height, the resonance is only a function of separation distance and not of the along-ridge length; that is, the enhanced resonance in 3D is not caused by 3D standing waves or basin modes. Instead, the difference in resonance between the 2D and 3D simulations is attributed to the topographic blocking of the barotropic flow by the 3D ridges, affecting wave generation, and a more constructive phasing between the remotely generated internal waves, arriving under oblique angles, and the barotropic tide. Most of the resonance occurs for the first mode. The contribution of the higher modes is reduced because of 3D radiation, multiple generation sites, scattering, and a rapid decay in amplitude away from the ridge.

MacKinnon, JA, Alford MH, Pinkel R, Klymak J, Zhao ZX.  2013.  The Latitudinal Dependence of Shear and Mixing in the Pacific Transiting the Critical Latitude for PSI. Journal of Physical Oceanography. 43:3-16. AbstractWebsite

Turbulent mixing rates are inferred from measurements spanning 25 degrees-37 degrees N in the Pacific Ocean. The observations were made as part of the Internal Waves Across the Pacific experiment, designed to investigate the long-range fate of the low-mode internal tide propagating north from Hawaii. Previous and companion results argue that, near a critical latitude of 29 degrees N, the internal tide loses energy to high-mode near-inertial motions through parametric subharmonic instability. Here, the authors estimate mixing from several variations of the finescale shear-strain parameterization, as well as Thorpe-scale analysis of overturns. Though all estimated diffusivities are modest in magnitude, average diffusivity in the top kilometer shows a factor of 2-4 elevation near and equatorward of 29 degrees N. However, given intrinsic uncertainty and the strong temporal variability of diffusivity observed in long mooring records, the meridional mixing pattern is found to b!

MacKinnon, JA, Alford MH, Sun O, Pinkel R, Zhao ZX, Klymak J.  2013.  Parametric Subharmonic Instability of the Internal Tide at 29 degrees N. Journal of Physical Oceanography. 43:17-28. AbstractWebsite

Observational evidence is presented for transfer of energy from the internal tide to near-inertial motions near 29 degrees N in the Pacific Ocean. The transfer is accomplished via parametric subharmonic instability (PSI), which involves interaction between a primary wave (the internal tide in this case) and two smaller-scale waves of nearly half the frequency. The internal tide at this location is a complex superposition of a low-mode waves propagating north from Hawaii and higher-mode waves generated at local seamounts, making application of PSI theory challenging. Nevertheless, a statistically significant phase locking is documented between the internal tide and upward-and downward-propagating near-inertial waves. The phase between those three waves is consistent with that expected from PSI theory. Calculated energy transfer rates from the tide to near-inertial motions are modest, consistent with local dissipation rate estimates. The conclusion is that while PSI does be!

Frants, M, Damerell GM, Gille ST, Heywood KJ, MacKinnon J, Sprintall J.  2013.  An assessment of density-based finescale methods for estimating diapycnal diffusivity in the Southern Ocean. Journal of Atmospheric and Oceanic Technology. 30:2647-2661.   10.1175/jtech-d-12-00241.1   AbstractWebsite

Finescale estimates of diapycnal diffusivity are computed from CTD and expendable CTD (XCTD) data sampled in Drake Passage and in the eastern Pacific sector of the Southern Ocean and are compared against microstructure measurements from the same times and locations. The microstructure data show vertical diffusivities that are one-third to one-fifth as large over the smooth abyssal plain in the southeastern Pacific as they are in Drake Passage, where diffusivities are thought to be enhanced by the flow of the Antarctic Circumpolar Current over rough topography. Finescale methods based on vertical strain estimates are successful at capturing the spatial variability between the low-mixing regime in the southeastern Pacific and the high-mixing regime of Drake Passage. Thorpe-scale estimates for the same dataset fail to capture the differences between Drake Passage and eastern Pacific estimates. XCTD profiles have lower vertical resolution and higher noise levels after filtering than CTD profiles, resulting in XCTD estimates that are, on average, an order of magnitude higher than CTD estimates. Overall, microstructure diffusivity estimates are better matched by strain-based estimates than by estimates based on Thorpe scales, and CTD data appear to perform better than XCTD data. However, even the CTD-based strain diffusivity estimates can differ from microstructure diffusivities by nearly an order of magnitude, suggesting that density-based fine-structure methods of estimating mixing from CTD or XCTD data have real limitations in low-stratification regimes such as the Southern Ocean.

MacKinnon, J, Laurent LS, Garabato AN.  2013.  Diapycnal mixing processes in the ocean interior. Ocean Circulation and Climate.
MacKinnon, J.  2013.  Mountain wave in the deep ocean. Nature. 501:321-322.   10.1038/501321a  
Whalen, CB, Talley LD, MacKinnon JA.  2012.  Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophysical Research Letters. 39:n/a-n/a.   10.1029/2012GL053196   AbstractWebsite

The influence of turbulent ocean mixing transcends its inherently small scales to affect large scale ocean processes including water-mass transformation, stratification maintenance, and the overturning circulation. However, the distribution of ocean mixing is not well described by sparse ship-based observations since this mixing is both spatially patchy and temporally intermittent. We use strain information from Argo float profiles in the upper 2,000 m of the ocean to generate over 400,000 estimates of the energy dissipation rate, indicative of ocean mixing. These estimates rely on numerous assumptions, and do not take the place of direct measurement methods. Temporally averaged estimates reveal clear spatial patterns in the parameterized dissipation rate and diffusivity distribution across all the oceans. They corroborate previous observations linking elevated dissipation rates to regions of rough topography. We also observe heightened estimated dissipation rates in areas of high eddy kinetic energy, as well as heightened diffusivity in high latitudes where stratification is weak. The seasonal dependence of mixing is observed in the Northwest Pacific, suggesting a wind-forced response in the upper ocean.

Alford, MH, MacKinnon JA, Nash JD, Simmons H, Pickering A, Klymak JM, Pinkel R, Sun O, Rainville L, Musgrave R, Beitzel T, Fu KH, Lu CW.  2011.  Energy Flux and Dissipation in Luzon Strait: Two Tales of Two Ridges. Journal of Physical Oceanography. 41:2211-2222.   10.1175/jpo-d-11-073.1   AbstractWebsite

Internal tide generation, propagation, and dissipation are investigated in Luzon Strait, a system of two quasi-parallel ridges situated between Taiwan and the Philippines. Two profiling moorings deployed for about 20 days and a set of nineteen 36-h lowered ADCP-CTD time series stations allowed separate measurement of diurnal and semidiurnal internal tide signals. Measurements were concentrated on a northern line, where the ridge spacing was approximately equal to the mode-1 wavelength for semidiurnal motions, and a southern line, where the spacing was approximately two-thirds that. The authors contrast the two sites to emphasize the potential importance of resonance between generation sites. Throughout Luzon Strait, baroclinic energy, energy fluxes, and turbulent dissipation were some of the strongest ever measured. Peak-to-peak baroclinic velocity and vertical displacements often exceeded 2 m s(-1) and 300 m, respectively. Energy fluxes exceeding 60 kW m(-1) were measured at spring tide at the western end of the southern line. On the northern line, where the western ridge generates appreciable eastward-moving signals, net energy flux between the ridges was much smaller, exhibiting a nearly standing wave pattern. Overturns tens to hundreds of meters high were observed at almost all stations. Associated dissipation was elevated in the bottom 500-1000 m but was strongest by far atop the western ridge on the northern line, where >500-m overturns resulted in dissipation exceeding 2 x 10(-6) W kg(-1) (implying diapycnal diffusivity K(rho) > 0.2 m(2) s(-1)). Integrated dissipation at this location is comparable to conversion and flux divergence terms in the energy budget. The authors speculate that resonance between the two ridges may partly explain the energetic motions and heightened dissipation.

Zhao, ZX, Alford MH, MacKinnon JA, Pinkel R.  2010.  Long-Range Propagation of the Semidiurnal Internal Tide from the Hawaiian Ridge. Journal of Physical Oceanography. 40:713-736.   10.1175/2009jpo4207.1   AbstractWebsite

The northeastward progression of the semidiurnal internal tide from French Frigate Shoals (FFS), Hawaii, is studied with an array of six simultaneous profiling moorings spanning 25.5 degrees-37.1 degrees N (approximate to 1400 km) and 13-yr-long Ocean Topography Experiment (TOPEX)/Poseidon (TIP) altimeter data processed by a new technique. The moorings have excellent temporal and vertical resolutions, while the altimeter offers broad spatial coverage of the surface manifestation of the internal tide's coherent portion. Together these two approaches provide a unique view of the internal tide's long-range propagation in a complex ocean environment. The moored observations reveal a rich, time-variable, and multimodal internal tide field, with higher-mode motions contributing significantly to velocity, displacement, and energy. In spite of these contributions, the coherent mode-1 internal tide dominates the northeastward energy flux, and is detectable in both moored and altimetric data over the entire array. Phase and group propagation measured independently from moorings and altimetry agree well with theoretical values. Sea surface height anomalies (SSHAs) measured from moorings and altimetry agree well in amplitude and phase until the northern end of the array, where phase differences arise presumably from refraction by mesoscale flows. Observed variations in SSHA, energy flux, and kinetic-to-potential energy ratio indicate an interference pattern resulting from superposed northeastward radiation from Hawaii and southeastward from the Aleutian Ridge. A simple model of two plane waves explains most of these features.

Tejada-Martinez, AE, Grosch CE, Gargett AE, Polton JA, Smith JA, MacKinnon JA.  2009.  A hybrid spectral/finite-difference large-eddy simulator of turbulent processes in the upper ocean. Ocean Modelling. 30:115-142.   10.1016/j.ocemod.2009.06.008   AbstractWebsite

A three-dimensional numerical model for large-eddy simulation (LES) of oceanic turbulent processes is described. The numerical formulation comprises a spectral discretization in the horizontal directions and a high-order compact finite-difference discretization in the vertical direction. Time-stepping is accomplished via a second-order accurate fractional-step scheme. LES subgrid-scale (SGS) closure is given by a traditional Smagorinsky eddy-viscosity parametrization for which the model coefficient is derived following similarity theory in the near-surface region. Alternatively, LES closure is given by the dynamic Smagorinsky parametrization for which the model coefficient is computed dynamically as a function of the flow. Validation studies are presented demonstrating the temporal and spatial accuracy of the formulation for laminar flows with analytical solutions. Further validation studies are described involving direct numerical simulation (DNS) and LES of turbulent channel flow and LES of decaying isotropic turbulence. Sample flow problems include surface Ekman layers and wind-driven shallow water flows both with and without Langmuir circulation (LC) generated by wave effects parameterized via the well-known Craik-Leibovich (C-L) vortex force. In the case of the surface Ekman layers, the inner layer (where viscous effects are important) is not resolved and instead is parameterized with the Smagorinsky models previously described. The validity of the dynamic Smagorinsky model (DSM) for parameterizing the surface inner layer is assessed and a modification to the surface stress boundary condition based on log-layer behavior is introduced improving the performance of the DSM. Furthermore, in Ekman layers with wave effects, the implicit LES grid filter leads to LC subgrid-scales requiring ad hoc modeling via an explicit spatial filtering of the C-L force in place of a suitable SGS parameterization. (C) 2009 Elsevier Ltd. All rights reserved.

MacKinnon, JA, Johnston TMS, Pinkel R.  2008.  Strong transport and mixing of deep water through the Southwest Indian Ridge. Nature Geoscience. 1:755-758.   10.1038/ngeo340   AbstractWebsite

The Indian Ocean harbours an important but poorly understood part of the global meridional ocean overturning circulation, which transports heat to high latitudes(1). Understanding heat exchange in the Indian Ocean requires knowledge of the magnitudes and locations of both meridional deep-water transport and mixing, but in particular the latter is poorly constrained at present(2,3). Here we present detailed measurements of transport and mixing in the Atlantis II fracture zone in the Southwest Indian Ridge, one of the main conduits for equatorward-flowing deep water(4,5). We observe a northward jet of deep and bottom water extending 1,000 m vertically with a transport rate of 3 x 10(6) m(3) s(-1). Turbulent diffusivity within the jet was up to two orders of magnitude above typical deep ocean levels in our measurements. Our results quantify the flow through this narrow fracture zone to 20 to 30% of the total meridional overturning circulation in the Indian Ocean, and provide an example of elevated turbulence in a deep sheared flow that is not hydraulically controlled, in contrast to many other fracture zones(6-9).