Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Green, H, Bailey J, Schwarz L, Vanos J, Ebi K, Benmarhnia T.  2019.  Impact of heat on mortality and morbidity in low and middle income countries: A review of the epidemiological evidence and considerations for future research. Environmental Research. 171:80-91.   10.1016/j.envres.2019.01.010   AbstractWebsite

Heat waves and high air temperature are associated with increased morbidity and mortality. However, the majority of research conducted on this topic is focused on high income areas of the world. Although heat waves have the most severe impacts on vulnerable populations, relatively few studies have studied their impacts in low and middle income countries (LMICs). The aim of this paper is to review the existing evidence in the literature on the impact of heat on human health in LMICs. We identified peer-reviewed epidemiologic studies published in English between January 1980 and August 2018 investigating potential associations between high ambient temperature or heat waves and mortality or morbidity. We selected studies according to the following criteria: quantitative studies that used primary and/or secondary data and report effect estimates where ambient temperature or heat waves are the main exposure of interest in relation to human morbidity or mortality within LMICs. Of the total 146 studies selected, eighty-two were conducted in China, nine in other countries of East Asia and the Pacific, twelve in South Asia, ten in Sub-Saharan Africa, eight in the Middle East and North Africa, and seven in each of Latin America and Europe. The majority of studies (92.9%) found positive associations between heat and human morbidity/mortality. Additionally, while outcome variables and study design differed greatly, most utilized a time-series study design and examined overall heath related morbidity/mortality impacts in an entire population, although it is notable that the selected studies generally found that the elderly, women, and individuals within the low socioeconomic brackets were the most vulnerable to the effects of high temperature. By highlighting the existing evidence on the impact of extreme heat on health in LMICs, we hope to determine data needs and help direct future studies in addressing this knowledge gap. The focus on LMICs is justified by the lack of studies and data studying the health burden of higher temperatures in these regions even though LMICs have a lower capacity to adapt to high temperatures and thus an increased risk.

2018
Kalkstein, AJ, Kalkstein LS, Vanos JK, Eisenman DP, Dixon PG.  2018.  Heat/mortality sensitivities in Los Angeles during winter: a unique phenomenon in the United States. Environmental Health. 17   10.1186/s12940-018-0389-7   AbstractWebsite

Background: Extreme heat is often associated with elevated levels of human mortality, particularly across the mid-latitudes. Los Angeles, CA exhibits a unique, highly variable winter climate, with brief periods of intense heat caused by downsloping winds commonly known as Santa Ana winds. The goal is to determine if Los Angeles County is susceptible to heat-related mortality during the winter season. This is the first study to specifically evaluate heatrelated mortality during the winter for a U.S. city. Methods: Utilizing the Spatial Synoptic Classification system in Los Angeles County from 1979 through 2010, we first relate daily human mortality to synoptic air mass type during the winter season (December, January, February) using Welch's t-tests. However, this methodology is only somewhat effective at controlling for important inter-and intra-annual trends in human mortality unrelated to heat such as influenza outbreaks. As a result, we use distributed lag nonlinear modeling (DLNM) to evaluate if the relative risk of human mortality increases during higher temperatures in Los Angeles, as the DLNM is more effective at controlling for variability at multiple temporal scales within the human mortality dataset. Results: Significantly higher human mortality is uncovered in winter when dry tropical air is present in Los Angeles, particularly among those 65 years and older (p < 0.001). The DLNM reveals the relative risk of human mortality increases when above average temperatures are present. Results are especially pronounced for maximum and mean temperatures, along with total mortality and those 65 +. Conclusions: The discovery of heat-related mortality in winter is a unique finding in the United States, and we recommend stakeholders consider warning and intervention techniques to mitigate the role of winter heat on human health in the County.

2017
Grundstein, A, Knox JA, Vanos J, Cooper ER, Casa DJ.  2017.  American football and fatal exertional heat stroke: a case study of Korey Stringer. International Journal of Biometeorology. 61:1471-1480.   10.1007/s00484-017-1324-2   AbstractWebsite

On August 1, 2001, Korey Stringer, a Pro Bowl offensive tackle for the Minnesota Vikings, became the first and to date the only professional American football player to die from exertional heat stroke (EHS). The death helped raise awareness of the dangers of exertional heat illnesses in athletes and prompted the development of heat safety policies at the professional, collegiate, and interscholastic levels. Despite the public awareness of this death, no published study has examined in detail the circumstances surrounding Stringer's fatal EHS. Using the well-documented details of the case, our study shows that Stringer's fatal EHS was the result of a combination of physiological limitations, organizational and treatment failings, and extreme environmental conditions. The COMfort FormulA (COMFA) energy budget model was used to assess the relative importance of several extrinsic factors on Stringer's EHS, including weather conditions, clothing insulation, and activity levels. We found that Stringer's high-intensity training in relation to the oppressive environmental conditions was the most prominent factor in producing dangerous, uncompensable heat stress conditions and that the full football uniform played a smaller role in influencing Stringer's energy budget. The extreme energy budget levels that led to the fatal EHS would have been avoided according to our modeling through a combination of reduced intensity and lower clothing insulation. Finally, a long delay in providing medical treatment made the EHS fatal. These results highlight the importance of modern heat safety guidelines that provide controls on extrinsic factors, such as the adjustment of duration and intensity of training along with protective equipment modifications based on environmental conditions and the presence of an emergency action plan focused on rapid recognition and immediate on-site aggressive cooling of EHS cases.

2013
Vanos, JK, Cakmak S.  2013.  Changing air mass frequencies in Canada: potential links and implications for human health. Int J Biometeorol. 58:121-35.   10.1007/s00484-013-0634-2   Abstract

Many individual variables have been studied to understand climate change, yet an overall weather situation involves the consideration of many meteorological variables simultaneously at various times diurnally, seasonally, and yearly. The current study identifies a full weather situation as an air mass type using synoptic scale classification, in 30 population centres throughout Canada. Investigative analysis of long-term air mass frequency trends was completed, drawing comparisons between seasons and climate zones. We find that the changing air mass trends are highly dependent on the season and climate zone being studied, with an overall increase of moderate ('warm') air masses and decrease of polar ('cold') air masses. In the summertime, general increased moisture content is present throughout Canada, consistent with the warming air masses. The moist tropical air mass, containing the most hot and humid air, is found to increase in a statistically significant fashion in the summertime in 46% of the areas studied, which encompass six of Canada's ten largest population centres. This emphasises the need for heat adaptation and acclimatisation for a large proportion of the Canadian population. In addition, strong and significant decreases of transition/frontal passage days were found throughout Canada. This result is one of the most remarkable transition frequency results published to date due to its consistency in identifying declining trends, coinciding with research completed in the United States (US). We discuss relative results and implications to similar US air mass trend analyses, and draw upon research studies involving large-scale upper-level air flow and vortex connections to air mass changes, to small-scale meteorological and air pollution interactions. Further research is warranted to better understand such connections, and how these air masses relate to the overall and city-specific health of Canadians.