Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Melgar, D, Geng JH, Crowell BW, Haase JS, Bock Y, Hammond WC, Allen RM.  2015.  Seismogeodesy of the 2014 M(w)6.1 Napa earthquake, California: Rapid response and modeling of fast rupture on a dipping strike-slip fault. Journal of Geophysical Research-Solid Earth. 120:5013-5033.   10.1002/2015jb011921   AbstractWebsite

Real-time high-rate geodetic data have been shown to be useful for rapid earthquake response systems during medium to large events. The 2014 M(w)6.1 Napa, California earthquake is important because it provides an opportunity to study an event at the lower threshold of what can be detected with GPS. We show the results of GPS-only earthquake source products such as peak ground displacement magnitude scaling, centroid moment tensor (CMT) solution, and static slip inversion. We also highlight the retrospective real-time combination of GPS and strong motion data to produce seismogeodetic waveforms that have higher precision and longer period information than GPS-only or seismic-only measurements of ground motion. We show their utility for rapid kinematic slip inversion and conclude that it would have been possible, with current real-time infrastructure, to determine the basic features of the earthquake source. We supplement the analysis with strong motion data collected close to the source to obtain an improved postevent image of the source process. The model reveals unilateral fast propagation of slip to the north of the hypocenter with a delayed onset of shallow slip. The source model suggests that the multiple strands of observed surface rupture are controlled by the shallow soft sediments of Napa Valley and do not necessarily represent the intersection of the main faulting surface and the free surface. We conclude that the main dislocation plane is westward dipping and should intersect the surface to the east, either where the easternmost strand of surface rupture is observed or at the location where the West Napa fault has been mapped in the past.

Geng, JH, Bock Y, Melgar D, Crowell BW, Haase JS.  2013.  A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 Brawley seismic swarm: Implications for earthquake early warning. Geochemistry Geophysics Geosystems. 14:2124-2142.   10.1002/ggge.20144   AbstractWebsite

The 26 August 2012 Brawley seismic swarm of hundreds of events ranging from M1.4 to M5.5 in the Salton Trough, California provides a unique data set to investigate a new seismogeodetic approach that combines Global Positioning System (GPS) and accelerometer observations to estimate displacement and velocity waveforms. First in simulated real-time mode, we analyzed 1-5 Hz GPS data collected by 17 stations fully encircling the swarm zone at near-source distances up to about 40km using precise point positioning with ambiguity resolution (PPP-AR). We used a reference network of North American GPS stations well outside the region of deformation to estimate fractional-cycle biases and satellite clock parameters, which were then combined with ultrarapid orbits from the International GNSS Service to estimate positions during the Brawley seismic swarm. Next, we estimated seismogeodetic displacements and velocities from GPS phase and pseudorange observations and 100-200 Hz accelerations collected at three pairs of GPS and seismic stations in close proximity using a new tightly coupled Kalman filter approach as an extension of the PPP-AR process. We can clearly discern body waves in the velocity waveforms, including P-wave arrivals not detectable with the GPS-only approach for earthquake magnitudes as low as M-w 4.6 and significant static offsets for magnitudes as low as M-w 5.4. Our study shows that GPS networks upgraded with strong motion accelerometers can provide new information for improved understanding of the earthquake rupture process and be of critical value in creating a robust early warning system for any earthquake of societal significance.

Crowell, BW, Melgar D, Bock Y, Haase JS, Geng JH.  2013.  Earthquake magnitude scaling using seismogeodetic data. Geophysical Research Letters. 40:6089-6094.   10.1002/2013gl058391   AbstractWebsite

The combination of GPS and strong-motion data to estimate seismogeodetic waveforms creates a data set that is sensitive to the entire spectrum of ground displacement and the full extent of coseismic slip. In this study we derive earthquake magnitude scaling relationships using seismogeodetic observations of either P wave amplitude or peak ground displacements from five earthquakes in Japan and California ranging in magnitude from 5.3 to 9.0. The addition of the low-frequency component allows rapid distinction of earthquake size for large magnitude events with high precision, unlike accelerometer data that saturate for earthquakes greater than M 7 to 8, and is available well before the coseismic displacements are emplaced. These results, though based on a limited seismogeodetic data set, support earlier studies that propose it may be possible to estimate the final magnitude of an earthquake well before the rupture is complete.

Melgar, D, Crowell BW, Bock Y, Haase JS.  2013.  Rapid modeling of the 2011 Mw 9.0 Tohoku-oki earthquake with seismogeodesy. Geophysical Research Letters.   10.1002/grl.50590   AbstractWebsite

Rapid characterization of finite fault geometry and slip for large earthquakes is important for mitigation of seismic and tsunamigenic hazards. Saturation of near-source weak motion and problematic integration of strong-motion data into displacements make this difficult in real time. Combining GPS and accelerometer data to estimate seismogeodetic displacement waveforms overcomes these limitations by providing mm-level three-dimensional accuracy and improved estimation of coseismic deformation compared to GPS-only methods. We leverage collocated GPS and accelerometer data from the 2011 Mw 9.0 Tohoku-oki, Japan earthquake by replaying them in simulated real-time mode. Using a novel approach to account for fault finiteness, we generate an accurate centroid moment tensor solution independently of any constraint on the slab geometry followed by a finite fault slip model. The replay of GPS and seismic data demonstrates that robust models could have been made available within 3 min of earthquake initiation.