Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2013
Bowling, T, Calais E, Haase JS.  2013.  Detection and modelling of the ionospheric perturbation caused by a Space Shuttle launch using a network of ground-based Global Positioning System stations. Geophysical Journal International. 192:1324-1331.   10.1093/gji/ggs101   AbstractWebsite

The exhaust plume of the Space Shuttle during its ascent triggers acoustic waves which propagate through the atmosphere and induce electron density changes at ionospheric heights which changes can be measured using ground-based Global Positioning System (GPS) phase data. Here, we use a network of GPS stations to study the acoustic wave generated by the STS-125 Space Shuttle launch on May 11, 2009. We detect the resulting changes in ionospheric electron density, with characteristics that are typical of acoustic waves triggered by explosions at or near the Earth's surface or in the atmosphere. We successfully reproduce the amplitude and timing of the observed signal using a ray-tracing model with a moving source whose amplitude is directly scaled by a physical model of the shuttle exhaust energy, acoustic propagation in a dispersive atmosphere and a simplified two-fluid model of collisions between neutral gas and free electrons in the ionosphere. The close match between observed and model waveforms validates the modelling approach. This raises the possibility of using ground-based GPS networks to estimate the acoustic energy release of explosive sources near the Earth's surface or in atmosphere, and to constrain some atmospheric acoustic parameters.

Crowell, BW, Melgar D, Bock Y, Haase JS, Geng JH.  2013.  Earthquake magnitude scaling using seismogeodetic data. Geophysical Research Letters. 40:6089-6094.   10.1002/2013gl058391   AbstractWebsite

The combination of GPS and strong-motion data to estimate seismogeodetic waveforms creates a data set that is sensitive to the entire spectrum of ground displacement and the full extent of coseismic slip. In this study we derive earthquake magnitude scaling relationships using seismogeodetic observations of either P wave amplitude or peak ground displacements from five earthquakes in Japan and California ranging in magnitude from 5.3 to 9.0. The addition of the low-frequency component allows rapid distinction of earthquake size for large magnitude events with high precision, unlike accelerometer data that saturate for earthquakes greater than M 7 to 8, and is available well before the coseismic displacements are emplaced. These results, though based on a limited seismogeodetic data set, support earlier studies that propose it may be possible to estimate the final magnitude of an earthquake well before the rupture is complete.

2004
Miyazaki, S, Larson KM, Choi KH, Hikima K, Koketsu K, Bodin P, Haase J, Emore G, Yamagiwa A.  2004.  Modeling the rupture process of the 2003 September 25 Tokachi-Oki (Hokkaido) earthquake using 1-Hz GPS data. Geophysical Research Letters. 31   L2160310.1029/2004gl021457   AbstractWebsite

[ 1] High-rate GPS has the potential to recover both dynamic and static displacements accurately. We analyze 1-Hz GPS data recorded during the 2003 Tokachi-Oki earthquake. The 1-Hz GPS displacement waveforms show good agreement with integrated accelerometer records except for low frequency noise that are inherently present in integrated seismic records. The GPS waveforms were inverted to model the spatio-temporal evolution of the fault slip during the rupture. The slip is found to propagate downdip in the subduction zone with largest moment release -50 km northwest of the hypocenter. The region of largest slip agrees in general with traditional seismic studies, indicating that 1-Hz GPS can be used for finite fault studies. The 1-Hz GPS slip model shows clearer contrast with afterslip distributions than those inferred from strong motion data, possibly because 1-Hz GPS is more sensitive to cumulative slip distribution.