Export 6 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N [O] P Q R S T U V W X Y Z   [Show ALL]
Moore, DG, Curray JR.  1982.  Objectives of Drilling on Young Passive Continental Margins - Application to the Gulf of California. Initial Reports of the Deep Sea Drilling Project. 64:27-33.Website
Curray, JR.  1996.  Origin of beach ridges: Comment. Marine Geology. 136:121-125.   10.1016/s0025-3227(96)00040-0   AbstractWebsite

Tanner (1995) has proposed that most common strand plain sandy beach ridges (his swash-built type) have been formed by a sea level rise-and-fall couplet of 5-30 cm, with a periodicity which is most commonly 30-60 years, but which ranges from as little as 3 to as much as 60 years. While such a mechanism could perhaps apply to beach ridges in lakes, if sea level has fluctuated with such regularity for the past several thousand years, all open ocean beach ridge periodicities should be the same, and furthermore this sea level signal would surely have been detected by physical oceanographers. Curray et al. (1969) described a strand plain of several hundred beach ridges on the western Mexican coast with cyclic formation of ridges varying from 12.2 to 16.5 years. The mechanism of formation invoked was periodic building of offshore bars to above sea level after sufficient sand had been transported into the area and during an optimal combination of oceanographic conditions.

Paull, CK, Spiess FN, Curray JR, Twichell DC.  1990.  Origin of Florida Canyon and the Role of Spring Sapping on the Formation of Submarine Box Canyons. Geological Society of America Bulletin. 102:502-515.   10.1130/0016-7606(1990)102<0502:oofcat>;2   Website
Curray, JR, Munasinghe T.  1991.  Origin of the Rajmahal Traps and the 85-Degrees-E Ridge - Preliminary Reconstructions of the Trace of the Crozet Hotspot. Geology. 19:1237-1240.   10.1130/0091-7613(1991)019<1237:ootrta>;2   AbstractWebsite

The 85-degrees-E Ridge is a buried aseismic ridge approximately parallel to and west of the Ninetyeast Ridge in the northeastern Indian Ocean. It was previously shown to be of probable volcanic origin emplaced on very young oceanic crust, but no satisfactory model of emplacement of the rocks was offered. We propose a model of origin of the Rajmahal Traps of northeastern India, the 85-degrees-E Ridge, and Afanasy Nikitin Seamount as the trace of the hotspot that now lies beneath the Crozet Islands in the southern Indian Ocean. This reconstruction places the Kerguelen hotspot, which formed the Ninetyeast Ridge, at the triple junction between Greater India, Australia, and Antartica before the breakup of eastern Gondwana.

Alam, M, Alam MM, Curray JR, Chowdhury ALR, Gani MR.  2003.  An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history. Sedimentary Geology. 155:179-208.   10.1016/s0037-0738(02)00180-x   AbstractWebsite

The Bengal Basin in the northeastern part of Indian subcontinent, between the Indian Shield and Indo-Burman Ranges, comprises three geo-tectonic provinces: (1) The Stable Shelf; (2) The Central Deep Basin (extending from the Sylhet Trough in the northeast towards the Hatia Trough in the south); and (3) The Chittagong-Tripura Fold Belt. Due to location of the basin at the juncture of three interacting plates, viz., the Indian, Burma and Tibetan (Eurasian) Plates, the basin-fill history of these geotectonic provinces varied considerably. Precambrian metasediments and Permian-Carboniferous rocks have been encountered only in drill holes in the stable shelf province. After Precambrian peneplanation of the Indian Shield, sedimentation in the Bengal Basin started in isolated graben-controlled basins on the basement. With the breakup of Gondwanaland in the Jurassic and Cretaceous, and northward movement of the Indian Plate, the basin started downwarping in the Early Cretaceous and sedimentation started on the stable shelf and deep basin; and since then sedimentation has been continuous for most of the basin. Subsidence of the basin can be attributed to differential adjustments of the crust, collision with the various elements of south Asia, and uplift of the eastern Himalayas and the Indo-Burman Ranges. Movements along several well-established faults were initiated following the breakup of Gondwanaland and during downwarping in the Cretaceous. By Eocene, because of a major marine transgression, the stable shelf came under a carbonate regime, whereas the deep basinal area was dominated by deep-water sedimentation. A major switch in sedimentation pattern over the Bengal Basin occurred during the Middle Eocene to Early Miocene as a result of collision of India with the Burma and Tibetan Blocks. The influx of elastic sediment into the basin from the Himalayas to the north and the Indo-Burman Ranges to the east rapidly increased at this time; and this was followed by an increase in the rate of subsidence of the basin. At this stage, deep marine sedimentation dominated in the deep basinal part, while deep to shallow marine conditions prevailed in the eastern part of the basin. By Middle Miocene, with continuing collision events between the plates and uplift in the Himalayas and Indo-Burman Ranges, a huge influx of elastic sediments came into the basin from the northeast and east. Throughout the Miocene, the depositional settings continued to vary from deep marine in the basin to shallow and coastal marine in the marginal parts of the basin. From Pliocene onwards, large amounts of sediment were filling the Bengal Basin from the west and northwest; and major delta building processes continued to develop the present-day delta morphology. Since the Cretaceous, architecture of them Bengal Basin has been changing due to the collision pattern and movements of the major plates in the region. However, three notable changes in basin configuration can be recognized that occurred during Early Eocene, Middle Miocene and Plio-Pleistocene times, when both the paleogeographic settings and source areas changed. The present basin configuration with the Ganges - Brahmaputra delta system on the north and the Bengal Deep Sea Fan on the south was established during the later part of Pliocene and Pleistocene; and delta progradation since then has been strongly affected by orogeny in the eastern Himalayas. Pleistocene glacial activities in the north accompanied sea level changes in the Bay of Bengal. (C) 2002 Elsevier Science B.V All rights reserved.