Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Glavin, DP, Cleaves HJ, Schubert M, Aubrey A, Bada JL.  2004.  New method for estimating bacterial cell abundances in natural samples by use of sublimation. Applied and Environmental Microbiology. 70:5923-5928.   10.1128/aem.70.10.5923-5928.2004   AbstractWebsite

We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500degreesC for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from similar to10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DA-PI (4,6-diamidino-2-phenylindole) staining.

Chen, RF, Bada JL.  1992.  The Fluorescence of Dissolved Organic-Matter in Seawater. Marine Chemistry. 37:191-221.   10.1016/0304-4203(92)90078-o   AbstractWebsite

A total of 28 vertical profiles of seawater fluorescence was measured in the Sargasso Sea, the Straits of Florida, the Southern California Borderlands, and the central Pacific Ocean. In all cases, surface seawater fluorescence was low as a result of photochemical bleaching which occurs on the timescale of hours. Fluorescence of deep water was 2-2.5 times higher than that of surface waters, and was constant, implying a long residence time for fluorescent organic matter, possibly of the order of thousands of years. Fluorescence correlates well with nutrients (NO3-, PO43-) in mid-depth waters ( 100-1000 m) in the Sargasso Sea and the central North Pacific, consistent with results in the central Pacific and the coastal seas of Japan. This suggests that regeneration or formation of fluorescent materials accompanies the oxidation and remineralization of settling organic particles. The various sources and sinks of fluorescent organic matter in the global oceans are assessed. The major sources are particles and in situ formation; rivers, rain, diffusion from sediments, and release from organisms are minor sources. The major sink is photochemical bleaching.