Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Botta, O, Martins Z, Emmenegger C, Dworkin JP, Glavin DP, Harvey RP, Zenobi R, Bada JL, Ehrenfreund P.  2008.  Polycyclic aromatic hydrocarbons and amino acids in meteorites and ice samples from LaPaz Icefield, Antarctica. Meteoritics & Planetary Science. 43:1465-1480. AbstractWebsite

We have analyzed ice samples and meteorites from the LaPaz region of Antarctica to investigate the composition of polycyclic aromatic hydrocarbons (PAHs) and amino acids with the goal to understand whether or not there is a compositional relationship between the two reservoirs. Four LL5 ordinary chondrites (OCs) and one CK carbonaceous chondrite were collected as part of the 2003/2004 ANSMET season. Ice samples collected from directly underneath the meteorites were extracted. In addition, exhaust particles from the snowmobiles used during the expedition were collected to investigate possible contributions from this source. The meteorite samples, the particulate matter and solid-state extracts of the ice samples and the exhaust filters were subjected to two-step laser mass spectrometry (L2MS) to investigate the PAH composition. For amino acids analysis, the meteorites were extracted with water and acid hydrolyzed, and the extracts were analyzed with offline OPA/NAC derivatization combined with liquid chromatography with UV fluorescence detection and time of flight mass spectrometry (LC-FC/ToF-MS). PAHs in the particulate matter of the ice were found to be qualitatively similar to the meteorite samples, indicating that micron-sized grains of the meteorite may be embedded in the ice samples. The concentration levels of dissolved PAHs in all the ice samples were found to be below the detection limit of the L2MS. The PAH composition of the snowmobile exhaust is significantly different to the one in particulate matter, making it an unlikely Source of contamination for Antarctic meteorites. The amino acids glycine, beta-alanine and gamma-amino-n-butyric acid that were detected at concentrations of 3 to 19 parts per billion (ppb) are probably indigenous to the Antarctic meteorites. Some of the LaPaz ice samples were also found to contain amino acids at concentration levels of 1 to 33 parts per trillion (ppt), in particular alpha-aminoisobutyric acid (AIB), an abundant non-protein amino acid of extraterrestrial Origin found in some carbonaceous chondrites. We hypothesize that this amino acid could have been extracted from Antarctic micrometeorites and the particulate matter of the meteorites during the concentration procedure of the ice samples.

Skelley, AM, Cleaves HJ, Jayarajah CN, Bada JL, Mathies RA.  2006.  Application of the mars organic analyzer to nucleobase and amine biomarker detection. Astrobiology. 6:824-837.   10.1089/ast.2006.6.824   AbstractWebsite

The Mars Organic Analyzer (MOA), a portable microfabricated capillary electrophoresis instrument being developed for planetary exploration, is used to analyze a wide variety of fluorescamine-labeled amine-containing biomarker compounds, including amino acids, mono-and diaminoalkanes, amino sugars, nucleobases, and nucleobase degradation products. The nucleobases cytosine and adenine, which contain an exocyclic primary amine, were effectively labeled, separated, and detected at concentrations < 500 nM. To test the general applicability of the MOA for biomarker detection, amino acids and mono- and diamines were extracted from bacterial cells using both hydrolysis and sublimation followed by analysis. The extrapolated limit of detection provided by the valine biomarker was similar to 4 x 10(3) cells per sample. Products of an NH4CN polymerization that simulate a prebiotic synthesis were also successfully isolated via sublimation and analyzed. Adenine and alanine/serine were detected with no additional sample cleanup at 120 +/- 13 mu M and 4.1 +/- mu M, respectively, corresponding to a reaction yield of 0.04% and 0.0003%, respectively. This study demonstrates that the MOA provides sensitive detection and analysis of low levels of a wide variety of amine-containing organic compounds from both biological and abiotic sources.