Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Asc)]
2006
Glavin, DP, Dworkin JP, Aubrey A, Botta O, Doty JH, Martins Z, Bada JL.  2006.  Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography-time of flight-mass spectrometry. Meteoritics & Planetary Science. 41:889-902. AbstractWebsite

Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography-time of flight-mass spectrometry (LC-ToF-MS) Coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, beta-alanine, gamma-amino-n-butyric acid (gamma-ABA), and alpha-aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83 100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440-3200 ppb). In addition, ALL! 83 100 was found to have lower abundances of the alpha-dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino, acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83 100 parent body, or 3) ALH 83 100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of epsilon-amino-n-caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon-6 contamination from the Antarctic sample storage bags may have occurred during collection.

2010
Glavin, DP, Aubrey AD, Callahan MP, Dworkin JP, Elsila JE, Parker ET, Bada JL, Jenniskens P, Shaddad MH.  2010.  Extraterrestrial amino acids in the Almahata Sitta meteorite. Meteoritics & Planetary Science. 45:1695-1709.   10.1111/j.1945-5100.2010.01094.x   AbstractWebsite

Amino acid analysis of a meteorite fragment of asteroid 2008 TC(3) called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, beta-amino-n-butyric acid, 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (d/l similar to 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other nonprotein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2-methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five-carbon amino acids in Almahata Sitta compared to CI, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC(3) cooled to lower temperatures, or introduced as a contaminant from unrelated meteorite clasts and chemically altered by alpha-decarboxylation.