Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Glavin, DP, Schubert M, Bada JL.  2002.  Direct isolation of purines and pyrimidines from nucleic acids using sublimation. Analytical Chemistry. 74:6408-6412.   10.1021/ac0259663   AbstractWebsite

A sublimation technique was developed to isolate purines and pyrimidines directly from lambda-deoxyribonucleic acid (lambda-DNA) and Escherichia coli cells. The sublimation of adenine, cytosine, guanine, and thymine from lambda-DNA was tested under reduced pressure (similar to 0.5 Torr) at temperatures of > 150 degreesC. With the exception of guanine, approximately 60-75% of each base was sublimed directly from the lambda-DNA and recovered on a coldfinger of the sublimation apparatus after heating to 450 T. Several nucleobases including adenine, cytosine, thymine, and uracil were also recovered from E. coli bacteria after heating the cells to the same temperature, although some thermal decomposition of the bases also occurred. These results demonstrate the feasibility of using sublimation to isolate purines and pyrimidines from native E. coli DNA and RNA without any chemical treatment of the cells.

Glavin, DP, Schubert M, Botta O, Kminek G, Bada JL.  2001.  Detecting pyrolysis products from bacteria on Mars. Earth and Planetary Science Letters. 185:1-5.   10.1016/s0012-821x(00)00370-8   AbstractWebsite

A pyrolysis/sublimation technique was developed to isolate volatile amine compounds from a Mars soil analogue inoculated with similar to 10 billion Escherichia coli cells. In this technique, the inoculated soil is heated to 500 degreesC for several seconds at Martian ambient pressure and the sublimate, collected by a cold finger, then analyzed using high performance liquid chromatography. Methylamine and ethylamine, produced from glycine and alanine decarboxylation, were the most abundant amine compounds detected after pyrolysis of the cells. A heating cycle similar to that utilized in our experiment was also used to release organic compounds from the Martian soil in the 1976 Viking gas chromatography/mass spectrometry (GC/MS) pyrolysis experiment. The Viking GC/MS did not detect any organic compounds of Martian origin above a level of a few parts per billion in the Martian surface soil. Although the Viking GC/MS instruments were not specifically designed to search for the presence of living cells on Mars, our experimental results indicate that at the part per billion level, the degradation products generated from several million bacterial cells per gram of Martian soil would not have been detected. (C) 2001 Elsevier Science B.V. All rights reserved.