Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
Parker, ET, Cleaves JH, Burton AS, Glavin DP, Dworkin JP, Zhou MS, Bada JL, Fernandez FM.  2014.  Conducting Miller-Urey experiments. Jove-Journal of Visualized Experiments.   10.3791/51039   AbstractWebsite

In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using an apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H-2, 200 mmHg of CH4, and 200 mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage electric discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments.

Aubrey, AD, Cleaves HJ, Bada JL.  2009.  The Role of Submarine Hydrothermal Systems in the Synthesis of Amino Acids. Origins of Life and Evolution of Biospheres. 39:91-108.   10.1007/s11084-008-9153-2   AbstractWebsite

There is little consensus regarding the plausibility of organic synthesis in submarine hydrothermal systems (SHSs) and its possible relevance to the origin of life. The primary reason for the persistence of this debate is that most experimental high temperature and high-pressure organic synthesis studies have neglected important geochemical constraints with respect to source material composition. We report here the results of experiments exploring the potential for amino acid synthesis at high temperature from synthetic seawater solutions of varying composition. The synthesis of amino acids was examined as a function of temperature, heating time, starting material composition and concentration. Using very favorable reactant conditions (high concentrations of reactive, reduced species), small amounts of a limited set of amino acids are generated at moderate temperature conditions (similar to 125-175A degrees C) over short heating times of a few days, but even these products are significantly decomposed after exposure times of approximately 1 week. The high concentration dependence observed for these synthetic reactions are demonstrated by the fact that a 10-fold drop in concentration results in orders of magnitude lower yields of amino acids. There may be other synthetic mechanisms not studied herein that merit investigation, but the results are likely to be similar. We conclude that although amino acids can be generated from simple likely environmentally available precursors under SHS conditions, the equilibrium at high temperatures characteristic of SHSs favors net amino acid degradation rather than synthesis, and that synthesis at lower temperatures may be more favorable.

Cleaves, HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL.  2008.  A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Origins of Life and Evolution of Biospheres. 38:105-115.   10.1007/s11084-007-9120-3   AbstractWebsite

The action of an electric discharge on reduced gas mixtures such as H(2)O, CH(4) and NH(3) (or N(2)) results in the production of several biologically important organic compounds including amino acids. However, it is now generally held that the early Earth's atmosphere was likely not reducing, but was dominated by N(2) and CO(2). The synthesis of organic compounds by the action of electric discharges on neutral gas mixtures has been shown to be much less efficient. We show here that contrary to previous reports, significant amounts of amino acids are produced from neutral gas mixtures. The low yields previously reported appear to be the outcome of oxidation of the organic compounds during hydrolytic workup by nitrite and nitrate produced in the reactions. The yield of amino acids is greatly increased when oxidation inhibitors, such as ferrous iron, are added prior to hydrolysis. Organic synthesis from neutral atmospheres may have depended on the oceanic availability of oxidation inhibitors as well as on the nature of the primitive atmosphere itself. The results reported here suggest that endogenous synthesis from neutral atmospheres may be more important than previously thought.

Skelley, AM, Cleaves HJ, Jayarajah CN, Bada JL, Mathies RA.  2006.  Application of the mars organic analyzer to nucleobase and amine biomarker detection. Astrobiology. 6:824-837.   10.1089/ast.2006.6.824   AbstractWebsite

The Mars Organic Analyzer (MOA), a portable microfabricated capillary electrophoresis instrument being developed for planetary exploration, is used to analyze a wide variety of fluorescamine-labeled amine-containing biomarker compounds, including amino acids, mono-and diaminoalkanes, amino sugars, nucleobases, and nucleobase degradation products. The nucleobases cytosine and adenine, which contain an exocyclic primary amine, were effectively labeled, separated, and detected at concentrations < 500 nM. To test the general applicability of the MOA for biomarker detection, amino acids and mono- and diamines were extracted from bacterial cells using both hydrolysis and sublimation followed by analysis. The extrapolated limit of detection provided by the valine biomarker was similar to 4 x 10(3) cells per sample. Products of an NH4CN polymerization that simulate a prebiotic synthesis were also successfully isolated via sublimation and analyzed. Adenine and alanine/serine were detected with no additional sample cleanup at 120 +/- 13 mu M and 4.1 +/- mu M, respectively, corresponding to a reaction yield of 0.04% and 0.0003%, respectively. This study demonstrates that the MOA provides sensitive detection and analysis of low levels of a wide variety of amine-containing organic compounds from both biological and abiotic sources.

Bada, JL.  2004.  How life began on Earth: a status report. Earth and Planetary Science Letters. 226:1-15.   10.1016/j.epsl.2004.07.036   AbstractWebsite

There are two fundamental requirements for life as we know it, liquid water and organic polymers, such as nucleic acids and proteins. Water provides the medium for chemical reactions and the polymers carry out the central biological functions of replication and catalysis. During the accretionary phase of the Earth, high surface temperatures would have made the presence of liquid water and an extensive organic carbon reservoir unlikely. As the Earth's surface cooled, water and simple organic compounds, derived from a variety of sources, would have begun to accumulate. This set the stage for the process of chemical evolution to begin in which one of the central facets was the synthesis of biologically important polymers, some of which had a variety of simple catalytic functions. Increasingly complex macromolecules were produced and eventually molecules with the ability to catalyze their own imperfect replication appeared. Thus began the processes of multiplication, heredity and variation, and this marked the point of both the origin of life and evolution. Once simple self-replicating entities originated, they evolved first into the RNA World and eventually to the DNA/Protein World, which had all the attributes of modern biology. If the basic components water and organic polymers were, or are, present on other bodies in our solar system and beyond, it is reasonable to assume that a similar series of steps that gave rise of life on Earth could occur elsewhere. (C) 2004 Elsevier B.V. All rights reserved.

Levy, M, Miller SL, Brinton K, Bada JL.  2000.  Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus. 145:609-613.   10.1006/icar.2000.6365   AbstractWebsite

In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH(4)CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions, These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought. (C) 2000 Academic Press.