Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
Parker, ET, Zhou MS, Burton AS, Glavin DP, Dworkin JP, Krishnamurthy R, Fernandez FM, Bada JL.  2014.  A plausible simultaneous synthesis of amino acids and simple peptides on the primordial earth. Angewandte Chemie-International Edition. 53:8132-8136.   10.1002/anie.201403683   AbstractWebsite

Following his seminal work in 1953, Stanley Miller conducted an experiment in 1958 to study the polymerization of amino acids under simulated early Earth conditions. In the experiment, Miller sparked a gas mixture of CH4, NH3, and H2O, while intermittently adding the plausible prebiotic condensing reagent cyanamide. For unknown reasons, an analysis of the samples was not reported. We analyzed the archived samples for amino acids, dipeptides, and diketopiperazines by liquid chromatography, ion mobility spectrometry, and mass spectrometry. A dozen amino acids, 10 glycine-containing dipeptides, and 3 glycine-containing diketopiperazines were detected. Miller's experiment was repeated and similar polymerization products were observed. Aqueous heating experiments indicate that Strecker synthesis intermediates play a key role in facilitating polymerization. These results highlight the potential importance of condensing reagents in generating diversity within the prebiotic chemical inventory.

Cleaves, HJ, Aubrey AD, Bada JL.  2009.  An Evaluation of the Critical Parameters for Abiotic Peptide Synthesis in Submarine Hydrothermal Systems. Origins of Life and Evolution of Biospheres. 39:109-126.   10.1007/s11084-008-9154-1   AbstractWebsite

It has been proposed that oligopeptides may be formed in submarine hydrothermal systems (SHSs). Oligopeptides have been synthesized previously under simulated SHS conditions which are likely geochemically implausible. We have herein investigated the oligomerization of glycine under SHS-like conditions with respect to the limitations imposed by starting amino acid concentration, heating time, and temperature. When 10(-1) M glycine solutions were heated at 250A degrees C for < 20 min glycine oligomers up to tetramers and diketopiperazine (DKP) were detectable. At 200A degrees C, less oligomerization was noted. Peptides beyond glycylglycine (gly(2)) and DKP were not detected below 150A degrees C. At 10(-2) M initial glycine concentration and below, only gly(2), DKP, and gly(3) were detected, and then only above 200A degrees C at < 20 min reaction time. Gly(3) was undetectable at longer reaction times. The major parameters limiting peptide synthesis in SHSs appear to be concentration, time, and temperature. Given the expected low concentrations of amino acids, the long residence times and range of temperatures in SHSs, it is unlikely that SHS environments were robust sources of even simple peptides. Possible unexplored solutions to the problems presented here are also discussed.

Glavin, DP, Matrajt G, Bada JL.  2004.  Re-examination of amino acids in Antarctic micrometeorites. Space Life Sciences: Steps toward Origin(S) of Life. 33( Bernstein MP, Kress M, NavarroGonzalez R, Eds.).:106-113., Kidlington: Pergamon-Elsevier Science Ltd   10.1016/j.asr.2003.02.011   Abstract

The delivery of amino acids by micrometeorites to the early Earth during the period of heavy bombardment (4.5-3.5 Ga) could have been a significant source of the Earth's prebiotic organic inventory. Antarctic micrometeorites (AMMs) in the 100-200 mum size range represent the dominant mass fraction of extraterrestrial material accreted by the Earth today. However, one problem is that these 'large' micrometeorite grains can be heated to very high temperatures (1000 to 1500 degreesC) during atmospheric deceleration, causing the amino acids to decompose. In this study, we have analyzed the acid-hydrolyzed, hot water extracts from 455 AMMs for the presence of amino acids using high performance liquid chromatography. For comparison, a 5 mg sample of the CM meteorite Murchison was also investigated. In the Murchison sample we found high levels (similar to3-4 parts-per-million, ppm) of alpha-aminoisobutyric acid (AIB) and isovaline, two non-protein amino acids that are extremely rare on Earth and are characteristic of amino acids of apparent extraterrestrial origin. In contrast, we were unable to detect any AIB above the 0.1 ppm level in the AMM samples studied. Only in one AMM sample from a previous study has AIB been detected (similar to300 ppm). To date, more than 600 AMMs have been analyzed for extraterrestrial amino acids. Although our results indicate that less than 5% of all AMMs contain detectable levels of AIB, we cannot rule out the possibility that AIB can be delivered to the Earth intact by a small percentage of AMMs that escaped extensive heating during atmospheric entry. (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

Glavin, DP, Bada JL, Brinton KLF, McDonald GD.  1999.  Amino acids in the Martian meteorite Nakhla. Proceedings of the National Academy of Sciences of the United States of America. 96:8835-8838.   10.1073/pnas.96.16.8835   AbstractWebsite

A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract, The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

Bada, JL, Glavin DP, McDonald GD, Becker L.  1998.  A search for endogenous amino acids in martian meteorite ALH84001. Science. 279:362-365.   10.1126/science.279.5349.362   AbstractWebsite

Trace amounts of glycine, serine, and alanine were detected in the carbonate component of the martian meteorite ALH84001 by high-performance liquid chromatography. The detected amino acids were not uniformly distributed in the carbonate component and ranged in concentration from 0.1 to 7 parts per million. Although the detected alanine consists primarily of the L enantiomer, low concentrations (<0.1 parts per million) of endogenous D-alanine may be present in the ALH84001 carbonates. The amino acids present in this sample of ALH84001 appear to be terrestrial in origin and similar to those in Allan Hills ice, although the possibility cannot be ruled out that minute amounts of some amino acids such as D-alanine are preserved in the meteorite.