Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
Bada, JL, Ehrenfreund P, Grunthaner F, Blaney D, Coleman M, Farrington A, Yen A, Mathies R, Amudson R, Quinn R, Zent A, Ride S, Barron L, Botta O, Clark B, Glavin D, Hofmann B, Josset JL, Rettberg P, Robert F, Sephton M.  2008.  Urey: Mars Organic and Oxidant Detector. Space Science Reviews. 135:269-279.   10.1007/s11214-007-9213-3   AbstractWebsite

One of the fundamental challenges facing the scientific community as we enter this new century of Mars research is to understand, in a rigorous manner, the biotic potential both past and present of this outermost terrestrial-like planet in our solar system. Urey: Mars Organic and Oxidant Detector has been selected for the Pasteur payload of the European Space Agency's (ESA's) ExoMars rover mission and is considered a fundamental instrument to achieve the mission's scientific objectives. The instrument is named Urey in recognition of Harold Clayton Urey's seminal contributions to cosmochemistry, geochemistry, and the study of the origin of life. The overall goal of Urey is to search for organic compounds directly in the regolith of Mars and to assess their origin. Urey will perform a groundbreaking investigation of the Martian environment that will involve searching for organic compounds indicative of life and prebiotic chemistry at a sensitivity many orders of magnitude greater than Viking or other in situ organic detection systems. Urey will perform the first in situ search for key classes of organic molecules using state-of-the-art analytical methods that provide part-per-trillion sensitivity. It will ascertain whether any of these molecules are abiotic or biotic in origin and will evaluate the survival potential of organic compounds in the environment using state-of-the-art chemoresistor oxidant sensors.

Aubrey, AD, Chalmers JH, Bada JL, Grunthaner FJ, Amashukeli X, Willis P, Skelley AM, Mathies RA, Quinn RC, Zent AP, Ehrenfreund P, Amundson R, Glavin DP, Botta O, Barron L, Blaney DL, Clark BC, Coleman M, Hofmann BA, Josset JL, Rettberg P, Ride S, Robert F, Sephton MA, Yen A.  2008.  The Urey instrument: An advanced in situ organic and oxidant detector for Mars exploration. Astrobiology. 8:583-595.   10.1089/ast.2007.0169   AbstractWebsite

The Urey organic and oxidant detector consists of a suite of instruments designed to search for several classes of organic molecules in the martian regolith and ascertain whether these compounds were produced by biotic or abiotic processes using chirality measurements. These experiments will also determine the chemical stability of organic molecules within the host regolith based on the presence and chemical reactivity of surface and atmospheric oxidants. Urey has been selected for the Pasteur payload on the European Space Agency's (ESA's) upcoming 2013 ExoMars rover mission. The diverse and effective capabilities of Urey make it an integral part of the payload and will help to achieve a large portion of the mission's primary scientific objective: "to search for signs of past and present life on Mars." This instrument is named in honor of Harold Urey for his seminal contributions to the fields of cosmochemistry and the origin of life.

Skelley, AM, Aubrey AD, Willis PA, Amashukeli X, Ehrenfreund P, Bada JL, Grunthaner FJ, Mathies RA.  2007.  Organic amine biomarker detection in the Yungay region of the Atacama Desert with the Urey instrument. Journal of Geophysical Research-Biogeosciences. 112   10.1029/2006jg000329   AbstractWebsite

The Urey in situ organic compound analysis instrument, consisting of a subcritical water extractor ( SCWE) and a portable microchip capillary electrophoresis instrument called the Mars Organic Analyzer ( MOA), was field tested in the Atacama Desert, Chile, in June 2005. Soil samples from the most arid Yungay region were collected, biomarkers were extracted by the SCWE, and organic amine composition and amino acid chirality analysis was performed by the MOA. Samples collected from the top 1 cm of duracrust soil but shielded from the ambient environment by rocks were compared to the exposed duracrust. The shielded duracrust yielded amines and amino acids ranging from 50 to 100 ppb, while amino acid signals from the exposed duracrust were below blank levels. Samples from buried gypsum deposits located directly above a water flow channel contained amino acids ranging from 13 to 90 ppb. Chiral analysis revealed D/L ratios of 0.39 +/- 0.08 and 0.34 +/- 0.07 for alanine/serine and 0.78 +/- 0.06 for aspartic acid, indicating significant racemization of biologically produced amino acids. On the basis of the D/L ratios, we estimate sample ages ranging from 10(3) to 10(5) years. These results demonstrate the successful field testing of the Urey instrument, as well as the detection of biomarkers from past terrestrial life in one of the most arid and Mars-like regions on Earth.

Aubrey, A, Cleaves HJ, Chalmers JH, Skelley AM, Mathies RA, Grunthaner FJ, Ehrenfreund P, Bada JL.  2006.  Sulfate minerals and organic compounds on Mars. Geology. 34:357-360.   10.1130/g22316.1   AbstractWebsite

Strong evidence for evaporitic sulfate minerals such as gypsum and jarosite has recently been found on Mars. Although organic molecules are often codeposited with terrestrial evaporitic minerals, there have been no systematic investigations of organic components in sulfate minerals. We report here the detection of organic material, including amino acids and their amine degradation products, in ancient terrestrial sulfate minerals. Amino acids and amines appear to be preserved for geologically long periods in sulfate mineral matrices. This suggests that sulfate minerals should be prime targets in the search for organic compounds, including those of biological origin, on Mars.

Bada, JL.  1998.  Biogeochemistry of organic nitrogen compounds. Nitrogen-Containing Macromolecules in the Bio- and Geosphere. 707( Stankiewicz BA, VanBergen PF, Eds.).:64-73., Washington: Amer Chemical Soc Abstract

Nitrogen containing organic compounds represent the second most abundant reservoir of nitrogen on the surface of the Earth. However, the organic compounds that make up this global nitrogen pool are not well characterized. Although amino acids and the nitrogenous bases of nucleic acids make up only a few percent of the total organic nitrogen reservoir, the geochemical reactions of these compounds have been extensively studied. Because hydrolysis reactions are rapid on the geologic time scale, both proteins and nucleic acids (DNA and RNA) are not preserved for more than 10(3) to 10(5) years in most environments. The racemization reaction of amino acids converts the L-amino acids present in the biosphere into a racemic mixture (D/L amino acid ratio = 1.0) in the geosphere in less than 10(6) years. Anhydrous conditions, such as those that may be associated with amber entombed insects, may retard both biopolymer hydrolysis and racemization. Condensation reactions between amino acids and sugars, including sugars at apurinic sites in nucleic acid fragments, likely result in the incorporation of these compounds into geopolymers such as humic acids. Although rearrangement reactions in geopolymers may scramble the original molecular structures, part of the global organic nitrogen inventory was originally derived from amino acids and nucleic acid bases.