Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2002
Botta, O, Glavin DP, Kminek G, Bada JL.  2002.  Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites. Origins of Life and Evolution of Biospheres. 32:143-163.   10.1023/a:1016019425995   AbstractWebsite

Most meteorites are thought to have originated from objects in the asteroid belt. Carbonaceous chondrites, which contain significant amounts of organic carbon including complex organic compounds, have also been suggested to be derived from comets. The current model for the synthesis of organic compounds found in carbonaceous chondrites includes the survival of interstellar organic compounds and the processing of some of these compounds on the meteoritic parent body. The amino acid composition of five CM carbonaceous chondrites, two CIs, one CR, and one CV3 have been measured using hot water extraction-vapor hydrolysis, OPA/NAC derivatization and high-performance liquid chromatography (HPLC). Total amino acid abundances in the bulk meteorites as well as the amino acid concentrations relative to glycine = 1.0 for beta-alanine, alpha-aminoisobutyric acid and D-alanine were determined. Additional data for three Antarctic CM meteorites were obtained from the literature. All CM meteorites analyzed in this study show a complex distribution of amino acids and a high variability in total concentration ranging from similar to15 300 to similar to5800 parts per billion (ppb), while the CIs show a total amino acid abundance of similar to4300 ppb. The relatively (compared to glycine) high AIB content found in all the CMs is a strong indicator that Strecker-cyanohydrin synthesis is the dominant pathway for the formation of amino acids found in these meteorites. The data from the Antarctic CM carbonaceous chondrites are inconsistent with the results from the other CMs, perhaps due to influences from the Antarctic ice that were effective during their residence time. In contrast to CMs, the data from the CI carbonaceous chondrites indicate that the Strecker synthesis was not active on their parent bodies.

2001
Ehrenfreund, P, Glavin DP, Botta O, Cooper G, Bada JL.  2001.  Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of Cl type carbonaceous chondrites. Proceedings of the National Academy of Sciences of the United States of America. 98:2138-2141.   10.1073/pnas.051502898   AbstractWebsite

Amino acid analyses using HPLC of pristine interior pieces of the Cl carbonaceous chondrites Orgueil and Ivuna have found that beta -alanine, glycine, and gamma -amino-n-butyric acid (ABA) are the most abundant amino acids in these two meteorites, with concentrations ranging from approximate to 600 to 2,000 parts per billion (ppb). Other alpha -amino acids such as alanine, alpha -ABA, alpha -aminoisobutyric acid (AIB), and isovaline are present only in trace amounts (<200 ppb). Carbon isotopic measurements of -alanine and glycine and the presence of racemic (D/L approximate to 1) alanine and beta -ABA in Orgueil suggest that these amino acids are extraterrestrial in origin. In comparison to the CM carbonaceous chondrites Murchison and Murray, the amino acid composition of the Cls is strikingly distinct, suggesting that these meteorites came from a different type of parent body, possibly an extinct comet, than did the CM carbonaceous chondrites.

1996
Becker, L, Poreda RJ, Bada JL.  1996.  Extraterrestrial helium trapped in fullerenes in the sudbury impact structure. Science. 272:249-252.   10.1126/science.272.5259.249   AbstractWebsite

Fullerenes (C-60 and C-70) in the Sudbury impact structure contain trapped helium with a He-3/He-4 ratio of 5.5 x 10(-4) to 5.9 x 10(-4). The He-3/He-4 ratio exceeds the accepted solar wind value by 20 to 30 percent and is higher by an order of magnitude than the maximum reported mantle value, Terrestrial nuclear reactions or cosmic-ray bombardment are not sufficient to generate such a high ratio. The He-3/He-4 ratios in the Sudbury fullerenes are similar to those found in meteorites and in some interplanetary dust particles. The implication is that the helium within the C-60 molecules at Sudbury is of extraterrestrial origin.

1994
Bada, JL, Bigham C, Miller SL.  1994.  Impact Melting of Frozen Oceans on the Early Earth - Implications for the Origin of Life. Proceedings of the National Academy of Sciences of the United States of America. 91:1248-1250.   10.1073/pnas.91.4.1248   AbstractWebsite

Without sufficient greenhouse gases in the atmosphere, the early Earth would have become a permanently frozen planet because the young Sun was less luminous than it is today. Several resolutions to this faint young Sun-frozen Earth paradox have been proposed, with an atmosphere rich in CO2 being the one generally favored. However, these models assume that there were no mechanisms for melting a once frozen ocean. Here we show that bolide impacts between about 3.6 and 4.0 billion years ago could have episodically melted an ice-covered early ocean. Thaw-freeze cycles associated with bolide impacts could have been important for the initiation of abiotic reactions that gave rise to the first living organisms.