Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
Parker, ET, Cleaves JH, Burton AS, Glavin DP, Dworkin JP, Zhou MS, Bada JL, Fernandez FM.  2014.  Conducting Miller-Urey experiments. Jove-Journal of Visualized Experiments.   10.3791/51039   AbstractWebsite

In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using an apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H-2, 200 mmHg of CH4, and 200 mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage electric discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments.

Onstott, TC, Magnabosco C, Aubrey AD, Burton AS, Dworkin JP, Elsila JE, Grunsfeld S, Cao BH, Hein JE, Glavin DP, Kieft TL, Silver BJ, Phelps TJ, van Heerden E, Opperman DJ, Bada JL.  2014.  Does aspartic acid racemization constrain the depth limit of the subsurface biosphere? Geobiology. 12:1-19.   10.1111/gbi.12069   AbstractWebsite

Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of similar to 89years for 1km depth and 27 degrees C and 1-2years for 3km depth and 54 degrees C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 degrees C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

Parker, ET, Cleaves HJ, Dworkin JP, Glavin DP, Callahan M, Aubrey A, Lazcano A, Bada JL.  2011.  Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proceedings of the National Academy of Sciences of the United States of America. 108:5526-5531.   10.1073/pnas.1019191108   AbstractWebsite

Archived samples from a previously unreported 1958 Stanley Miller electric discharge experiment containing hydrogen sulfide (H2S) were recently discovered and analyzed using high-performance liquid chromatography and time-of-flight mass spectrometry. We report here the detection and quantification of primary amine-containing compounds in the original sample residues, which were produced via spark discharge using a gaseous mixture of H2S, CH4, NH3, and CO2. A total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordial environments. The relative yield of some amino acids, in particular the isomers of aminobutyric acid, are the highest ever found in a spark discharge experiment. The simulated primordial conditions used by Miller may serve as a model for early volcanic plume chemistry and provide insight to the possible roles such plumes may have played in abiotic organic synthesis. Additionally, the overall abundances of the synthesized amino acids in the presence of H2S are very similar to the abundances found in some carbonaceous meteorites, suggesting that H2S may have played an important role in prebiotic reactions in early solar system environments.

Glavin, DP, Aubrey AD, Callahan MP, Dworkin JP, Elsila JE, Parker ET, Bada JL, Jenniskens P, Shaddad MH.  2010.  Extraterrestrial amino acids in the Almahata Sitta meteorite. Meteoritics & Planetary Science. 45:1695-1709.   10.1111/j.1945-5100.2010.01094.x   AbstractWebsite

Amino acid analysis of a meteorite fragment of asteroid 2008 TC(3) called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, beta-amino-n-butyric acid, 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (d/l similar to 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other nonprotein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2-methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five-carbon amino acids in Almahata Sitta compared to CI, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC(3) cooled to lower temperatures, or introduced as a contaminant from unrelated meteorite clasts and chemically altered by alpha-decarboxylation.

Botta, O, Martins Z, Emmenegger C, Dworkin JP, Glavin DP, Harvey RP, Zenobi R, Bada JL, Ehrenfreund P.  2008.  Polycyclic aromatic hydrocarbons and amino acids in meteorites and ice samples from LaPaz Icefield, Antarctica. Meteoritics & Planetary Science. 43:1465-1480. AbstractWebsite

We have analyzed ice samples and meteorites from the LaPaz region of Antarctica to investigate the composition of polycyclic aromatic hydrocarbons (PAHs) and amino acids with the goal to understand whether or not there is a compositional relationship between the two reservoirs. Four LL5 ordinary chondrites (OCs) and one CK carbonaceous chondrite were collected as part of the 2003/2004 ANSMET season. Ice samples collected from directly underneath the meteorites were extracted. In addition, exhaust particles from the snowmobiles used during the expedition were collected to investigate possible contributions from this source. The meteorite samples, the particulate matter and solid-state extracts of the ice samples and the exhaust filters were subjected to two-step laser mass spectrometry (L2MS) to investigate the PAH composition. For amino acids analysis, the meteorites were extracted with water and acid hydrolyzed, and the extracts were analyzed with offline OPA/NAC derivatization combined with liquid chromatography with UV fluorescence detection and time of flight mass spectrometry (LC-FC/ToF-MS). PAHs in the particulate matter of the ice were found to be qualitatively similar to the meteorite samples, indicating that micron-sized grains of the meteorite may be embedded in the ice samples. The concentration levels of dissolved PAHs in all the ice samples were found to be below the detection limit of the L2MS. The PAH composition of the snowmobile exhaust is significantly different to the one in particulate matter, making it an unlikely Source of contamination for Antarctic meteorites. The amino acids glycine, beta-alanine and gamma-amino-n-butyric acid that were detected at concentrations of 3 to 19 parts per billion (ppb) are probably indigenous to the Antarctic meteorites. Some of the LaPaz ice samples were also found to contain amino acids at concentration levels of 1 to 33 parts per trillion (ppt), in particular alpha-aminoisobutyric acid (AIB), an abundant non-protein amino acid of extraterrestrial Origin found in some carbonaceous chondrites. We hypothesize that this amino acid could have been extracted from Antarctic micrometeorites and the particulate matter of the meteorites during the concentration procedure of the ice samples.

Chen, RF, Bada JL.  1992.  The Fluorescence of Dissolved Organic-Matter in Seawater. Marine Chemistry. 37:191-221.   10.1016/0304-4203(92)90078-o   AbstractWebsite

A total of 28 vertical profiles of seawater fluorescence was measured in the Sargasso Sea, the Straits of Florida, the Southern California Borderlands, and the central Pacific Ocean. In all cases, surface seawater fluorescence was low as a result of photochemical bleaching which occurs on the timescale of hours. Fluorescence of deep water was 2-2.5 times higher than that of surface waters, and was constant, implying a long residence time for fluorescent organic matter, possibly of the order of thousands of years. Fluorescence correlates well with nutrients (NO3-, PO43-) in mid-depth waters ( 100-1000 m) in the Sargasso Sea and the central North Pacific, consistent with results in the central Pacific and the coastal seas of Japan. This suggests that regeneration or formation of fluorescent materials accompanies the oxidation and remineralization of settling organic particles. The various sources and sinks of fluorescent organic matter in the global oceans are assessed. The major sources are particles and in situ formation; rivers, rain, diffusion from sediments, and release from organisms are minor sources. The major sink is photochemical bleaching.