Publications

Export 18 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Glavin, DP, Dworkin JP, Aubrey A, Botta O, Doty JH, Martins Z, Bada JL.  2006.  Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography-time of flight-mass spectrometry. Meteoritics & Planetary Science. 41:889-902. AbstractWebsite

Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography-time of flight-mass spectrometry (LC-ToF-MS) Coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, beta-alanine, gamma-amino-n-butyric acid (gamma-ABA), and alpha-aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83 100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440-3200 ppb). In addition, ALL! 83 100 was found to have lower abundances of the alpha-dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino, acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83 100 parent body, or 3) ALH 83 100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of epsilon-amino-n-caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon-6 contamination from the Antarctic sample storage bags may have occurred during collection.

Glavin, DP, Bada JL, Brinton KLF, McDonald GD.  1999.  Amino acids in the Martian meteorite Nakhla. Proceedings of the National Academy of Sciences of the United States of America. 96:8835-8838.   10.1073/pnas.96.16.8835   AbstractWebsite

A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract, The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

Bada, JL.  1991.  Amino-Acid Cosmogeochemistry. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences. 333:349-358.   10.1098/rstb.1991.0084   AbstractWebsite

Amino acids are ubiquitous components of living organisms and as a result they are widely distributed on the surface of the Earth. Whereas only 20 amino acids are found in proteins, a much more diverse mixture of amino acids has been detected in carbonaceous meteorites. Amino acids in living organisms consist exclusively of the L-enantiomers, but in meteorites, amino acids with chiral carbons are present as racemic mixtures. Protein amino acids undergo a variety of diagenetic reactions that produce some other amino acids but not the unique amino acids present in meteorites. Nevertheless, trace quantities of meteoritic amino acids may occur on the Earth, either as a result of bolide impact or from the capture of cosmic dust particles. The ensemble of amino acids present on the early Earth before life existed was probably similar to those in prebiotic experiments and meteorites. This generates a question about why the L-amino acids on which life is based were selected.

Zhao, MX, Bada JL.  1995.  Determination of Alpha-Dialkylamino Acids and Their Enantiomers in Geological Samples by High-Performance Liquid-Chromatography after Derivatization with a Chiral Adduct of O-Phthaldialdehyde. Journal of Chromatography A. 690:55-63.   10.1016/0021-9673(94)00927-2   AbstractWebsite

Derivatization with o-phthaldialdehyde (OPA) and the chiral thiol N-acetyl-L-cysteine (NAG) is a convenient and sensitive technique for the HPLC detection and resolution of protein amino acid enantiomers. The kinetics of the reaction of OPA-NAC with alpha-dialkylamino acids was investigated. The fluorescence yield of alpha-dialkylamino acids was only about 10% of that of protein amino acids when the derivatization was carried out at room temperature for 1-2 min, which is the procedure generally used for protein amino acid analyses. The fluorescence yield of alpha-dialkylamino acids can be enhanced by up to ten-fold when the derivatization reaction time is increased to 15 min at room temperature. The OPA-NAC technique was optimized for the detection and enantiomeric resolution of alpha-dialkylamino acids in geological samples which contain a large excess of protein amino acids. The estimated detection limit for alpha-dialkylamino acids is 1-2 pmol, comparable to that for protein amino acids.

Ehrenfreund, P, Glavin DP, Botta O, Cooper G, Bada JL.  2001.  Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of Cl type carbonaceous chondrites. Proceedings of the National Academy of Sciences of the United States of America. 98:2138-2141.   10.1073/pnas.051502898   AbstractWebsite

Amino acid analyses using HPLC of pristine interior pieces of the Cl carbonaceous chondrites Orgueil and Ivuna have found that beta -alanine, glycine, and gamma -amino-n-butyric acid (ABA) are the most abundant amino acids in these two meteorites, with concentrations ranging from approximate to 600 to 2,000 parts per billion (ppb). Other alpha -amino acids such as alanine, alpha -ABA, alpha -aminoisobutyric acid (AIB), and isovaline are present only in trace amounts (<200 ppb). Carbon isotopic measurements of -alanine and glycine and the presence of racemic (D/L approximate to 1) alanine and beta -ABA in Orgueil suggest that these amino acids are extraterrestrial in origin. In comparison to the CM carbonaceous chondrites Murchison and Murray, the amino acid composition of the Cls is strikingly distinct, suggesting that these meteorites came from a different type of parent body, possibly an extinct comet, than did the CM carbonaceous chondrites.

Glavin, DP, Aubrey AD, Callahan MP, Dworkin JP, Elsila JE, Parker ET, Bada JL, Jenniskens P, Shaddad MH.  2010.  Extraterrestrial amino acids in the Almahata Sitta meteorite. Meteoritics & Planetary Science. 45:1695-1709.   10.1111/j.1945-5100.2010.01094.x   AbstractWebsite

Amino acid analysis of a meteorite fragment of asteroid 2008 TC(3) called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, beta-amino-n-butyric acid, 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (d/l similar to 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other nonprotein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2-methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five-carbon amino acids in Almahata Sitta compared to CI, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC(3) cooled to lower temperatures, or introduced as a contaminant from unrelated meteorite clasts and chemically altered by alpha-decarboxylation.

Hutt, LD, Glavin DP, Bada JL, Mathies RA.  1999.  Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration. Analytical Chemistry. 71:4000-4006.   10.1021/ac9903959   AbstractWebsite

Chiral separations of fluorescein isothiocyanate-labeled amino acids have been performed on a microfabricated capillary electrophoresis chip to explore the feasibility of using such devices to analyze for extinct or extant life signs in extraterrestrial environments. The test system consists of a folded electrophoresis channel (19.0 cm long x 150 mu m wide x 20 mu m deep) that was photolithographically fabricated in a 10-cm-diameter glass wafer sandwich, coupled to a laser-excited confocal fluorescence detection apparatus providing subattomole sensitivity. Using a sodium dodecyl sulfate/gamma-cyclodextrin pH 10.0 carbonate electrophoresis buffer and a separation voltage of 550 V/cm at 10 degrees C, baseline resolution was observed for Val, Ala, Glu, and Asp enantiomers and Gly in only 4 min. Enantiomeric ratios were determined for amino acids extracted from the Murchison meteorite, and these values closely matched values determined by HPLC. These results demonstrate the feasibility of using microfabricated lab-on-a-chip systems to analyze extraterrestrial samples for amino acids.

Raggi, L, Bada JL, Lazcano A.  2016.  On the lack of evolutionary continuity between prebiotic peptides and extant enzymes. Physical Chemistry Chemical Physics. 18:20028-20032.   10.1039/c6cp00793g   AbstractWebsite

The significance of experiments that claim to simulate the properties of prebiotic small peptides and polypeptides as models of the polymers that may have preceded proteins is critically addressed. As discussed here, most of these experiments are based only on a small number of a larger set of amino acids that may have been present in the prebiotic environment, supported by both experimental simulations and the repertoire of organic compounds reported in carbonaceous chondrites. Model experiments with small peptides may offer some insights into the processes that contributed to generate the chemical environment leading to the emergence of informational oligomers, but not to the origin of proteins. The large body of circumstantial evidence indicating that catalytic RNA played a key role in the origin of protein synthesis during the early stages of cellular evolution implies that the emergence of the genetic code and of protein biosynthesis are no longer synonymous with the origin of life. Hence, reports on the abiotic synthesis of small catalytic peptides under potential prebiotic conditions do not provide information on the origin of triplet encoded protein biosynthesis, but in some cases may serve as models to understand the properties of the earliest proteins.

Zenobi, R, Philippoz JM, Zare RN, Wing MR, Bada JL, Marti K.  1992.  Organic-Compounds in the Forest Vale, H4 Ordinary Chondrite. Geochimica Et Cosmochimica Acta. 56:2899-2905.   10.1016/0016-7037(92)90366-q   AbstractWebsite

We have analyzed the H4 ordinary chondrite Forest Vale for polycyclic aromatic hydrocarbons (PAHs) using two-step laser mass spectrometry (L2MS) and for amino acids using a standard chromatographic method. Indigenous PAHs were identified in the matrices of freshly cleaved interior faces but could not be detected in pulverized silicates and chondrules. No depth dependence of the PAHs was found in a chipped interior piece. Amino acids, taken from the entire sample, consisted of protein amino acids that were nonracemic, indicating that they are terrestrial contaminants. The presence of indigenous PAHs and absence of indigenous amino acids provides support for the contention that different processes and environments contributed to the synthesis of the organic matter in the solar system.

Wing, MR, Bada JL.  1992.  The Origin of the Polycyclic Aromatic-Hydrocarbons in Meteorites. Origins of Life and Evolution of the Biosphere. 21:375-383. AbstractWebsite

Polycyclic aromatic hydrocarbons (PAHs) in Cl and C2 Carbonaceous Chondrites appear to be the product of a high-temperature synthesis. This observation counters a prevailing view that PAHs in meteorites are a thermal alternation product of preexisting aliphatic compounds, which in turn required the presence of low-temperature mineral phases such as magnetite and hydrated phyllosilicates for their formation. Such a process would necessarily lead to a more low-temperature assemblage of PAHs, as many low-temperature minerals and compounds are extant in meteorites. Ivuna, a C1 carbonaceous chondrite, has been shown to contain abundant amounts of the three-ring PAHs phenanthrene/anthracene, but no detectable levels of the two- and four-ring PAHs naphthalene and pyrene/fluoranthene. Ivuna and other C1 carbonaceous chondrites are known to have been extensively altered by water. The aqueous solubilities of PAHs indicate that some PAHs would have been mobilized during the aqueous alteration phase in meteorite parent bodies. Model geochromatography experiments using crushed serpentine or beach sand as the solid phase and water for elution suggest that the complete separation of two, three, and four-ring PAHs could be expected to occur in the parent body of C1 carbonaceous chondrites. It is proposed that aqueous fluids driven by heat in the parent body of Ivuna migrated from the interior to the surface, in the process transporting, separating and concentrating PAHs at various zones in the parent body. The presence of indigenous PAHs and absence of indigenous amino acids in the H4 ordinary chondrite Forest Vale provides support for the contention that different processes and environments contributed to the synthesis of the organic matter in the solar system.

Parker, ET, Zhou MS, Burton AS, Glavin DP, Dworkin JP, Krishnamurthy R, Fernandez FM, Bada JL.  2014.  A plausible simultaneous synthesis of amino acids and simple peptides on the primordial earth. Angewandte Chemie-International Edition. 53:8132-8136.   10.1002/anie.201403683   AbstractWebsite

Following his seminal work in 1953, Stanley Miller conducted an experiment in 1958 to study the polymerization of amino acids under simulated early Earth conditions. In the experiment, Miller sparked a gas mixture of CH4, NH3, and H2O, while intermittently adding the plausible prebiotic condensing reagent cyanamide. For unknown reasons, an analysis of the samples was not reported. We analyzed the archived samples for amino acids, dipeptides, and diketopiperazines by liquid chromatography, ion mobility spectrometry, and mass spectrometry. A dozen amino acids, 10 glycine-containing dipeptides, and 3 glycine-containing diketopiperazines were detected. Miller's experiment was repeated and similar polymerization products were observed. Aqueous heating experiments indicate that Strecker synthesis intermediates play a key role in facilitating polymerization. These results highlight the potential importance of condensing reagents in generating diversity within the prebiotic chemical inventory.

Sagan, C, Khare BN, Thompson WR, McDonald GD, Wing MR, Bada JL, Tuan VD, Arakawa ET.  1993.  Polycyclic Aromatic-Hydrocarbons in the Atmospheres of Titan and Jupiter. Astrophysical Journal. 414:399-405.   10.1086/173086   AbstractWebsite

Polycyclic aromatic hydrocarbons (PAHs) are important components of the interstellar medium and carbonaceous chondrites, but have never been identified in the reducing atmospheres of the outer solar system. Incompletely characterized complex organic solids (tholins) produced by irradiating simulated Titan atmospheres reproduce well the observed UV/visible/IR optical constants of the Titan stratospheric haze. Titan tholin and a tholin generated in a crude simulation of the atmosphere of Jupiter are examined by two-step laser desorption/multiphoton ionization mass spectrometry. A range of two- to four-ring PAHs, some with one to four alkylation sites are identified, with net abundance approximately 10(-4) g g-1 (grams per gram) of tholins produced. Synchronous fluorescence techniques confirm this detection. Titan tholins have proportionately more one- and two-ring PAHs than do Jupiter tholins, which in turn have more four-ring and larger PAHs. The four-ringed PAH chrysene, prominent in some discussions of interstellar grains, is found in Jupiter tholins. Solid state C-13 NMR spectroscopy suggests congruent-to 25% of the total C in both tholins is tied up in aromatic and/or aliphatic alkenes. IR spectra indicate an upper limit in both tholins of congruent-to 6% by mass in benzenes, heterocyclics, and PAHs with more than four rings. Condensed PAHs may contribute at most approximately 10% to the observed detached limb haze layers on Titan. As with interstellar PAHs, the synthesis route of planetary PAHs is likely to be via acetylene addition reactions.

Parker, ET, Cleaves HJ, Bada JL, Fernandez FM.  2016.  Quantitation of alpha-hydroxy acids in complex prebiotic mixtures via liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry. 30:2043-2051.   10.1002/rcm.7684   AbstractWebsite

RationaleSpark discharge experiments, like those performed by Stanley Miller in the 1950s, generate complex, analytically challenging mixtures that contain biopolymer building blocks. Recently, -amino acids and -hydroxy acids (AHAs) were subjected to environmental cycling to form simple depsipeptides (peptides with both amide and ester linkages). The synthesis of AHAs under possible primordial environments must be examined to better understand this chemistry. MethodsWe report a direct, quantitative method for AHAs using ultrahigh-performance liquid chromatography and triple quadrupole mass spectrometry. Hexylamine ion-pairing chromatography and selected reaction monitoring detection were combined for the rapid analysis of ten AHAs in a single run. Additionally, prebiotic simulation experiments, including the first-ever reproduction of Miller's 1958 cyanamide spark discharge experiment, were performed to evaluate AHA synthesis over a wide range of possible primitive terrestrial environments. ResultsThe quantitating transition for each of the AHAs targeted in this study produced a limit of detection in the nanomolar concentration range. For most species, a linear response over a range spanning two orders of magnitude was found. The AHAs glycolic acid, lactic acid, malic acid, and -hydroxyglutaric acid were detected in electric discharge experiments in the low micromolar concentration range. ConclusionsThe results of this work suggest that the most abundant building blocks available for prebiotic depsipeptide synthesis would have been glycolic, lactic, malic, and -hydroxyglutaric acids, and their corresponding amino acids, glycine, alanine, and aspartic and glutamic acids. Copyright (c) 2016 John Wiley & Sons, Ltd.

Brinton, KLF, Bada JL.  1996.  A reexamination of amino acids in lunar soils: Implications for the survival of exogenous organic material during impact delivery. Geochimica Et Cosmochimica Acta. 60:349-354.   10.1016/0016-7037(95)00404-1   AbstractWebsite

Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of less than or equal to 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is less than or equal to 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth.

Botta, O, Glavin DP, Kminek G, Bada JL.  2002.  Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites. Origins of Life and Evolution of Biospheres. 32:143-163.   10.1023/a:1016019425995   AbstractWebsite

Most meteorites are thought to have originated from objects in the asteroid belt. Carbonaceous chondrites, which contain significant amounts of organic carbon including complex organic compounds, have also been suggested to be derived from comets. The current model for the synthesis of organic compounds found in carbonaceous chondrites includes the survival of interstellar organic compounds and the processing of some of these compounds on the meteoritic parent body. The amino acid composition of five CM carbonaceous chondrites, two CIs, one CR, and one CV3 have been measured using hot water extraction-vapor hydrolysis, OPA/NAC derivatization and high-performance liquid chromatography (HPLC). Total amino acid abundances in the bulk meteorites as well as the amino acid concentrations relative to glycine = 1.0 for beta-alanine, alpha-aminoisobutyric acid and D-alanine were determined. Additional data for three Antarctic CM meteorites were obtained from the literature. All CM meteorites analyzed in this study show a complex distribution of amino acids and a high variability in total concentration ranging from similar to15 300 to similar to5800 parts per billion (ppb), while the CIs show a total amino acid abundance of similar to4300 ppb. The relatively (compared to glycine) high AIB content found in all the CMs is a strong indicator that Strecker-cyanohydrin synthesis is the dominant pathway for the formation of amino acids found in these meteorites. The data from the Antarctic CM carbonaceous chondrites are inconsistent with the results from the other CMs, perhaps due to influences from the Antarctic ice that were effective during their residence time. In contrast to CMs, the data from the CI carbonaceous chondrites indicate that the Strecker synthesis was not active on their parent bodies.

Bada, JL, Glavin DP, McDonald GD, Becker L.  1998.  A search for endogenous amino acids in martian meteorite ALH84001. Science. 279:362-365.   10.1126/science.279.5349.362   AbstractWebsite

Trace amounts of glycine, serine, and alanine were detected in the carbonate component of the martian meteorite ALH84001 by high-performance liquid chromatography. The detected amino acids were not uniformly distributed in the carbonate component and ranged in concentration from 0.1 to 7 parts per million. Although the detected alanine consists primarily of the L enantiomer, low concentrations (<0.1 parts per million) of endogenous D-alanine may be present in the ALH84001 carbonates. The amino acids present in this sample of ALH84001 appear to be terrestrial in origin and similar to those in Allan Hills ice, although the possibility cannot be ruled out that minute amounts of some amino acids such as D-alanine are preserved in the meteorite.

Brinton, KLF, Engrand C, Glavin DP, Bada JL, Maurette M.  1998.  A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites. Origins of Life and Evolution of Biospheres. 28:413-424.   10.1023/a:1006548905523   AbstractWebsite

Antarctic micrometeorites (AMMs) in the 100-400 mu m size range are the dominant mass fraction of extraterrestrial material accreted by the Earth today. A high performance Liquid chromatography (HPLC) based technique exploited at the limits of sensitivity has been used to search for the extraterrestrial amino acids alpha-aminoisobutyric acid (AIB) and isovaline in AMMs. Five samples, each containing about 30 to 35 grains, were analyzed. All the samples possess a terrestrial amino acid component, indicated by the excess of the L-enantiomers of common protein amino acids. In only one sample (A91) was AIB found to be present at a level significantly above the background blanks. The concentration of AIB (similar to 280 ppm), and the AIB/isovaline ratio (greater than or equal to 10), in this sample are both much higher than in CM chondrites. The apparently large variation in the AIB concentrations of the samples suggests that AIB may be concentrated in rare subset of micrometeorites. Because the AIB/isovaline ratio in sample A91 is much larger than in CM chondrites, the synthesis of amino acids in the micrometeorite parent bodies might have involved a different process requiring an HCN-rich environment, such as that found in comets. If the present day characteristics of the meteorite acid micrometeorite fluxes can be extrapolated back in time, then the flux of large carbonaceous micrometeorites could have contributed to the inventory of prebiotic molecules on the early Earth.