Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2016
Bada, JL, Chalmers JH, Cleaves HJ.  2016.  Is formamide a geochemically plausible prebiotic solvent? Physical Chemistry Chemical Physics. 18:20085-20090.   10.1039/c6cp03290g   AbstractWebsite

From a geochemical perspective, significant amounts of pure formamide (HCONH2) would have likely been rare on the early Earth. There may have been mixed formamide-water solutions, but even in the presence of catalyst, solutions with >= 20 weight% water in formamide would not have produced significant amounts of prebiotic compounds. It might be feasible to produce relatively pure formamide by a rare occurrence of freezing formamide/water mixtures at temperatures lower than formamide's freezing point (2.55 degrees C) but greater than the freezing point of water. Because of the high density of formamide ice it would have sunk and accumulated at the bottom of the solution. If the remaining water froze on the surface of this ice, and was then removed by a sublimation-ablation process, a small amount of pure formamide ice might have been produced. In addition a recent report suggested that similar to 85 weight% formamide could be prepared by a geochemical type of fractional distillation process, offering another possible route for prebiotic formamide production.

2013
Bennett, RV, Cleaves HJ, Davis JM, Sokolov DA, Orlando TM, Bada JL, Fernandez FM.  2013.  Desorption Electrospray Ionization Imaging Mass Spectrometry as a Tool for Investigating Model Prebiotic Reactions on Mineral Surfaces. Analytical Chemistry. 85:1276-1279.   10.1021/ac303202n   AbstractWebsite

Mineral-assisted thermal decomposition of formamide (HCONH2) is a heavily studied model prebiotic reaction that has offered valuable insights into the plausible pathways leading to the chemical building blocks of primordial informational polymers. To date, most efforts have focused on the analysis of formamide reaction products released in solution, although several studies have examined the role of mineral catalysts in promoting this chemistry. We show here that the direct investigation of reactive mineral surfaces by desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) gives a new perspective on the important role of the mineral surface in the formation of reaction products. As a proof-of-principle example, we show that DESI-MSI allows interrogation of the molecular products produced on heterogeneous granite samples with minimal sample preparation. Purine and pyrimidine nucleobases and their derivatives are successfully detected by DESI-MSI, with a strong correlation of the spatial product distribution with the mineral microenvironment. To our knowledge, this study is the first application of DESI-MSI to the study of complex and porous mineral surfaces and their roles in chemical evolution. This DESI-MSI approach is generally applicable to a wide range of reactions or other processes involving minerals.