Publications

Export 2 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Glavin, DP, Bada JL, Brinton KLF, McDonald GD.  1999.  Amino acids in the Martian meteorite Nakhla. Proceedings of the National Academy of Sciences of the United States of America. 96:8835-8838.   10.1073/pnas.96.16.8835   AbstractWebsite

A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract, The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

Zenobi, R, Philippoz JM, Zare RN, Wing MR, Bada JL, Marti K.  1992.  Organic-Compounds in the Forest Vale, H4 Ordinary Chondrite. Geochimica Et Cosmochimica Acta. 56:2899-2905.   10.1016/0016-7037(92)90366-q   AbstractWebsite

We have analyzed the H4 ordinary chondrite Forest Vale for polycyclic aromatic hydrocarbons (PAHs) using two-step laser mass spectrometry (L2MS) and for amino acids using a standard chromatographic method. Indigenous PAHs were identified in the matrices of freshly cleaved interior faces but could not be detected in pulverized silicates and chondrules. No depth dependence of the PAHs was found in a chipped interior piece. Amino acids, taken from the entire sample, consisted of protein amino acids that were nonracemic, indicating that they are terrestrial contaminants. The presence of indigenous PAHs and absence of indigenous amino acids provides support for the contention that different processes and environments contributed to the synthesis of the organic matter in the solar system.