Export 8 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Skelley, AM, Cleaves HJ, Jayarajah CN, Bada JL, Mathies RA.  2006.  Application of the mars organic analyzer to nucleobase and amine biomarker detection. Astrobiology. 6:824-837.   10.1089/ast.2006.6.824   AbstractWebsite

The Mars Organic Analyzer (MOA), a portable microfabricated capillary electrophoresis instrument being developed for planetary exploration, is used to analyze a wide variety of fluorescamine-labeled amine-containing biomarker compounds, including amino acids, mono-and diaminoalkanes, amino sugars, nucleobases, and nucleobase degradation products. The nucleobases cytosine and adenine, which contain an exocyclic primary amine, were effectively labeled, separated, and detected at concentrations < 500 nM. To test the general applicability of the MOA for biomarker detection, amino acids and mono- and diamines were extracted from bacterial cells using both hydrolysis and sublimation followed by analysis. The extrapolated limit of detection provided by the valine biomarker was similar to 4 x 10(3) cells per sample. Products of an NH4CN polymerization that simulate a prebiotic synthesis were also successfully isolated via sublimation and analyzed. Adenine and alanine/serine were detected with no additional sample cleanup at 120 +/- 13 mu M and 4.1 +/- mu M, respectively, corresponding to a reaction yield of 0.04% and 0.0003%, respectively. This study demonstrates that the MOA provides sensitive detection and analysis of low levels of a wide variety of amine-containing organic compounds from both biological and abiotic sources.

Glavin, DP, Aubrey AD, Callahan MP, Dworkin JP, Elsila JE, Parker ET, Bada JL, Jenniskens P, Shaddad MH.  2010.  Extraterrestrial amino acids in the Almahata Sitta meteorite. Meteoritics & Planetary Science. 45:1695-1709.   10.1111/j.1945-5100.2010.01094.x   AbstractWebsite

Amino acid analysis of a meteorite fragment of asteroid 2008 TC(3) called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, beta-amino-n-butyric acid, 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (d/l similar to 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other nonprotein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2-methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five-carbon amino acids in Almahata Sitta compared to CI, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC(3) cooled to lower temperatures, or introduced as a contaminant from unrelated meteorite clasts and chemically altered by alpha-decarboxylation.

Johnson, AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL.  2008.  The Miller volcanic spark discharge experiment. Science. 322:404-404.   10.1126/science.1161527   Website
Bada, JL, Sephton MA, Ehrenfreund P, Mathies RA, Skelley AM, Grunthaner FJ, Zent AP, Quinn RC, Josset JL, Robert F, Botta O, Glavin DP.  2005.  New strategies to detect life on Mars. Astronomy & Geophysics. 46:26-27. AbstractWebsite

The quest to determine whether life existed, or still exists, on Mars continues with several missions planned for the red planet by both the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) in the next few decades. One instrument designed for these missions is the Mars Organic Detector (MOD), which uses a new approach to achieve exceptionally high detection sensitivities and analysis capabilities for key bio-organic compounds. MOD is scheduled to fly in the ESA ExoMars mission early next decade and will attempt to answer the question of whether we are alone in the solar system. Here the MOD team explains why we have reason to be optimistic about uncovering the organic secrets of Mars.

Arrhenius, G, Bada JL, Joyce GF, Lazcano A, Miller S, Orgel LE.  1999.  Origin and ancestor: Separate environments. Science. 283:792-792.Website
Botta, O, Bada JL, Gomez-Elvira J, Javaux E, Selsis F, Summons R.  2008.  "Strategies of life detection": Summary and outlook. Space Science Reviews. 135:371-380.   10.1007/s11214-008-9357-9   Website
Aubrey, AD, Chalmers JH, Bada JL, Grunthaner FJ, Amashukeli X, Willis P, Skelley AM, Mathies RA, Quinn RC, Zent AP, Ehrenfreund P, Amundson R, Glavin DP, Botta O, Barron L, Blaney DL, Clark BC, Coleman M, Hofmann BA, Josset JL, Rettberg P, Ride S, Robert F, Sephton MA, Yen A.  2008.  The Urey instrument: An advanced in situ organic and oxidant detector for Mars exploration. Astrobiology. 8:583-595.   10.1089/ast.2007.0169   AbstractWebsite

The Urey organic and oxidant detector consists of a suite of instruments designed to search for several classes of organic molecules in the martian regolith and ascertain whether these compounds were produced by biotic or abiotic processes using chirality measurements. These experiments will also determine the chemical stability of organic molecules within the host regolith based on the presence and chemical reactivity of surface and atmospheric oxidants. Urey has been selected for the Pasteur payload on the European Space Agency's (ESA's) upcoming 2013 ExoMars rover mission. The diverse and effective capabilities of Urey make it an integral part of the payload and will help to achieve a large portion of the mission's primary scientific objective: "to search for signs of past and present life on Mars." This instrument is named in honor of Harold Urey for his seminal contributions to the fields of cosmochemistry and the origin of life.

Bada, JL, Ehrenfreund P, Grunthaner F, Blaney D, Coleman M, Farrington A, Yen A, Mathies R, Amudson R, Quinn R, Zent A, Ride S, Barron L, Botta O, Clark B, Glavin D, Hofmann B, Josset JL, Rettberg P, Robert F, Sephton M.  2008.  Urey: Mars Organic and Oxidant Detector. Space Science Reviews. 135:269-279.   10.1007/s11214-007-9213-3   AbstractWebsite

One of the fundamental challenges facing the scientific community as we enter this new century of Mars research is to understand, in a rigorous manner, the biotic potential both past and present of this outermost terrestrial-like planet in our solar system. Urey: Mars Organic and Oxidant Detector has been selected for the Pasteur payload of the European Space Agency's (ESA's) ExoMars rover mission and is considered a fundamental instrument to achieve the mission's scientific objectives. The instrument is named Urey in recognition of Harold Clayton Urey's seminal contributions to cosmochemistry, geochemistry, and the study of the origin of life. The overall goal of Urey is to search for organic compounds directly in the regolith of Mars and to assess their origin. Urey will perform a groundbreaking investigation of the Martian environment that will involve searching for organic compounds indicative of life and prebiotic chemistry at a sensitivity many orders of magnitude greater than Viking or other in situ organic detection systems. Urey will perform the first in situ search for key classes of organic molecules using state-of-the-art analytical methods that provide part-per-trillion sensitivity. It will ascertain whether any of these molecules are abiotic or biotic in origin and will evaluate the survival potential of organic compounds in the environment using state-of-the-art chemoresistor oxidant sensors.