Publications

Export 15 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F [G] H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
G
George, JC, Bada J, Zeh J, Scott L, Brown SE, O'Hara T, Suydam R.  1999.  Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization. Canadian Journal of Zoology-Revue Canadienne De Zoologie. 77:571-580.   10.1139/cjz-77-4-571   AbstractWebsite

A total of 48 eye globes were collected and analyzed to estimate ages of bowhead whales using the aspartic acid racemization technique. In this technique, age is estimated based on intrinsic changes in the D and L enantiomeric isomeric forms of aspartic acid in the eye lens nucleus. Age estimates were successful for 42 animals. Racemization rate (k(Asp)) for aspartic acid was based on data from earlier studies of humans and fin whales; the estimate used was 1.18 x 10(-3)/year. The D/L ratio at birth ((D/L)(0)) Was estimated using animals less than or equal to 2 years of age (n = 8), since variability in the D/L measurements is large enough that differences among ages in this range are unmeasurable. The (D/L)(0) estimate was 0.0285. Variance of the age estimates was obtained using the delta method. Based on these data, growth appears faster for females than males, and age at sexual maturity (age at length 12-13 m for males and 13-13.5 m for females) occurs at around 25 years of age. Growth slows markedly for both sixes at roughly 40-50 years of age. Four individuals (all males) exceed 100 years of age. Standard error increased with estimated age, but the age estimates had lower coefficients of variation for older animals. Recoveries of traditional whale-hunting tools from five recently harvested whales also suggest life-spans in excess of 100 years of age in some cases.

Glavin, DP, Schubert M, Botta O, Kminek G, Bada JL.  2001.  Detecting pyrolysis products from bacteria on Mars. Earth and Planetary Science Letters. 185:1-5.   10.1016/s0012-821x(00)00370-8   AbstractWebsite

A pyrolysis/sublimation technique was developed to isolate volatile amine compounds from a Mars soil analogue inoculated with similar to 10 billion Escherichia coli cells. In this technique, the inoculated soil is heated to 500 degreesC for several seconds at Martian ambient pressure and the sublimate, collected by a cold finger, then analyzed using high performance liquid chromatography. Methylamine and ethylamine, produced from glycine and alanine decarboxylation, were the most abundant amine compounds detected after pyrolysis of the cells. A heating cycle similar to that utilized in our experiment was also used to release organic compounds from the Martian soil in the 1976 Viking gas chromatography/mass spectrometry (GC/MS) pyrolysis experiment. The Viking GC/MS did not detect any organic compounds of Martian origin above a level of a few parts per billion in the Martian surface soil. Although the Viking GC/MS instruments were not specifically designed to search for the presence of living cells on Mars, our experimental results indicate that at the part per billion level, the degradation products generated from several million bacterial cells per gram of Martian soil would not have been detected. (C) 2001 Elsevier Science B.V. All rights reserved.

Glavin, DP, Matrajt G, Bada JL.  2004.  Re-examination of amino acids in Antarctic micrometeorites. Space Life Sciences: Steps toward Origin(S) of Life. 33( Bernstein MP, Kress M, NavarroGonzalez R, Eds.).:106-113., Kidlington: Pergamon-Elsevier Science Ltd   10.1016/j.asr.2003.02.011   Abstract

The delivery of amino acids by micrometeorites to the early Earth during the period of heavy bombardment (4.5-3.5 Ga) could have been a significant source of the Earth's prebiotic organic inventory. Antarctic micrometeorites (AMMs) in the 100-200 mum size range represent the dominant mass fraction of extraterrestrial material accreted by the Earth today. However, one problem is that these 'large' micrometeorite grains can be heated to very high temperatures (1000 to 1500 degreesC) during atmospheric deceleration, causing the amino acids to decompose. In this study, we have analyzed the acid-hydrolyzed, hot water extracts from 455 AMMs for the presence of amino acids using high performance liquid chromatography. For comparison, a 5 mg sample of the CM meteorite Murchison was also investigated. In the Murchison sample we found high levels (similar to3-4 parts-per-million, ppm) of alpha-aminoisobutyric acid (AIB) and isovaline, two non-protein amino acids that are extremely rare on Earth and are characteristic of amino acids of apparent extraterrestrial origin. In contrast, we were unable to detect any AIB above the 0.1 ppm level in the AMM samples studied. Only in one AMM sample from a previous study has AIB been detected (similar to300 ppm). To date, more than 600 AMMs have been analyzed for extraterrestrial amino acids. Although our results indicate that less than 5% of all AMMs contain detectable levels of AIB, we cannot rule out the possibility that AIB can be delivered to the Earth intact by a small percentage of AMMs that escaped extensive heating during atmospheric entry. (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

Glavin, DP, Schubert M, Bada JL.  2002.  Direct isolation of purines and pyrimidines from nucleic acids using sublimation. Analytical Chemistry. 74:6408-6412.   10.1021/ac0259663   AbstractWebsite

A sublimation technique was developed to isolate purines and pyrimidines directly from lambda-deoxyribonucleic acid (lambda-DNA) and Escherichia coli cells. The sublimation of adenine, cytosine, guanine, and thymine from lambda-DNA was tested under reduced pressure (similar to 0.5 Torr) at temperatures of > 150 degreesC. With the exception of guanine, approximately 60-75% of each base was sublimed directly from the lambda-DNA and recovered on a coldfinger of the sublimation apparatus after heating to 450 T. Several nucleobases including adenine, cytosine, thymine, and uracil were also recovered from E. coli bacteria after heating the cells to the same temperature, although some thermal decomposition of the bases also occurred. These results demonstrate the feasibility of using sublimation to isolate purines and pyrimidines from native E. coli DNA and RNA without any chemical treatment of the cells.

Glavin, DP, Bada JL, Brinton KLF, McDonald GD.  1999.  Amino acids in the Martian meteorite Nakhla. Proceedings of the National Academy of Sciences of the United States of America. 96:8835-8838.   10.1073/pnas.96.16.8835   AbstractWebsite

A suite of protein and nonprotein amino acids were detected with high-performance liquid chromatography in the water- and acid-soluble components of an interior fragment of the Martian meteorite Nakhla, which fell in Egypt in 1911. Aspartic and glutamic acids, glycine, alanine, beta-alanine, and gamma-amino-n-butyric acid (gamma-ABA) were the most abundant amino acids detected and were found primarily in the 6 M HCl-hydrolyzed, hot water extract, The concentrations ranged from 20 to 330 parts per billion of bulk meteorite. The amino acid distribution in Nakhla, including the D/L ratios (values range from <0.1 to 0.5), is similar to what is found in bacterially degraded organic matter. The amino acids in Nakhla appear to be derived from terrestrial organic matter that infiltrated the meteorite soon after its fall to Earth, although it is possible that some of the amino acids are endogenous to the meteorite. The rapid amino acid contamination of Martian meteorites after direct exposure to the terrestrial environment has important implications for Mars sample-return missions and the curation of the samples from the time of their delivery to Earth.

Glavin, DP, Dworkin JP, Aubrey A, Botta O, Doty JH, Martins Z, Bada JL.  2006.  Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography-time of flight-mass spectrometry. Meteoritics & Planetary Science. 41:889-902. AbstractWebsite

Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography-time of flight-mass spectrometry (LC-ToF-MS) Coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, beta-alanine, gamma-amino-n-butyric acid (gamma-ABA), and alpha-aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83 100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440-3200 ppb). In addition, ALL! 83 100 was found to have lower abundances of the alpha-dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino, acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83 100 parent body, or 3) ALH 83 100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of epsilon-amino-n-caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon-6 contamination from the Antarctic sample storage bags may have occurred during collection.

Glavin, DP, Bada JL.  2001.  Survival of amino acids in micrometeorites during atmospheric entry. Astrobiology. 1:259-269.   10.1089/15311070152757456   AbstractWebsite

The delivery of amino acids by micrometeorites to the early Earth during the period of heavy bombardment could have been a significant source of the Earth's prebiotic amino acid inventory provided that these organic compounds survived atmospheric entry heating. To investigate the sublimation of amino acids from a micrometeorite analog at elevated temperature, grains from the CM-type carbonaceous chondrite Murchison were heated to 550degreeC inside a glass sublimation apparatus (SA) under reduced pressure. The sublimed residue that had collected on the cold finger of the SA after heating was analyzed for amino acids by HPLC. We found that when the temperature of the meteorite reached apprx150degreeC, a large fraction of the amino acid glycine had vaporized from the meteorite, recondensed onto the end of the SA cold finger, and survived as the rest of the grains heated to 550degreeC. alpha-Aminoisobutryic acid and isovaline, which are two of the most abundant non-protein amino acids in Murchison, did not sublime from the meteorite and were completely destroyed during the heating experiment. Our experimental results suggest that sublimation of glycine present in micrometeorite grains may provide a way for this amino acid to survive atmospheric entry heating at temperatures >550degreeC; all other amino acids apparently are destroyed.

Glavin, DP, Aubrey AD, Callahan MP, Dworkin JP, Elsila JE, Parker ET, Bada JL, Jenniskens P, Shaddad MH.  2010.  Extraterrestrial amino acids in the Almahata Sitta meteorite. Meteoritics & Planetary Science. 45:1695-1709.   10.1111/j.1945-5100.2010.01094.x   AbstractWebsite

Amino acid analysis of a meteorite fragment of asteroid 2008 TC(3) called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, beta-amino-n-butyric acid, 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (d/l similar to 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other nonprotein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2-methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are approximately 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five-carbon amino acids in Almahata Sitta compared to CI, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC(3) cooled to lower temperatures, or introduced as a contaminant from unrelated meteorite clasts and chemically altered by alpha-decarboxylation.

Glavin, DP, Bada JL.  1998.  Isolation of amino acids from natural samples using sublimation. Analytical Chemistry. 70:3119-3122.   10.1021/ac9803784   AbstractWebsite

Amino acids have appreciable vapor pressures above 150 degrees C and will sublime under partial vacuum at elevated temperatures without any racemization or decomposition. The recoveries of several amino acids including aspartic acid, serine, glycine, alanine, ol-aminoisobutyric acid, and valine were optimized by varying the temperature and duration of sublimation. Sublimation has been shown to be a rapid and effective technique for the isolation of amino acids from natural samples for enantiomeric analyses and a good substitute for conventional cation-exchange desalting techniques.

Glavin, DP, Cleaves HJ, Schubert M, Aubrey A, Bada JL.  2004.  New method for estimating bacterial cell abundances in natural samples by use of sublimation. Applied and Environmental Microbiology. 70:5923-5928.   10.1128/aem.70.10.5923-5928.2004   AbstractWebsite

We have developed a new method based on the sublimation of adenine from Escherichia coli to estimate bacterial cell counts in natural samples. To demonstrate this technique, several types of natural samples, including beach sand, seawater, deep-sea sediment, and two soil samples from the Atacama Desert, were heated to a temperature of 500degreesC for several seconds under reduced pressure. The sublimate was collected on a cold finger, and the amount of adenine released from the samples was then determined by high-performance liquid chromatography with UV absorbance detection. Based on the total amount of adenine recovered from DNA and RNA in these samples, we estimated bacterial cell counts ranging from similar to10(5) to 10(9) E. coli cell equivalents per gram. For most of these samples, the sublimation-based cell counts were in agreement with total bacterial counts obtained by traditional DA-PI (4,6-diamidino-2-phenylindole) staining.

Grew, ES, Bada JL, Hazen RM.  2011.  Borate Minerals and Origin of the RNA World. Origins of Life and Evolution of Biospheres. 41:307-316.   10.1007/s11084-010-9233-y   AbstractWebsite

The RNA World is generally thought to have been an important link between purely prebiotic (>3.7 Ga) chemistry and modern DNA/protein biochemistry. One concern about the RNA World hypothesis is the geochemical stability of ribose, the sugar moiety of RNA. Prebiotic stabilization of ribose by solutions associated with borate minerals, notably colemanite, ulexite, and kernite, has been proposed as one resolution to this difficulty. However, a critical unresolved issue is whether borate minerals existed in sufficient quantities on the primitive Earth, especially in the period when prebiotic synthesis processes leading to RNA took place. Although the oldest reported colemanite and ulexite are 330 Ma, and the oldest reported kernite, 19 Ma, boron isotope data and geologic context are consistent with an evaporitic borate precursor to 2400-2100 Ma borate deposits in the Liaoning and Jilin Provinces, China, as well as to tourmaline-group minerals at 33003450 Ma in the Barberton belt, South Africa. The oldest boron minerals for which the age of crystallization could be determined are the metamorphic tourmaline species schorl and dravite in the Isua complex (metamorphism between ca. 3650 and ca. 3600 Ma). Whether borates such as colemanite, ulexite and kernite were present in the Hadean (>4000 Ma) at the critical juncture when prebiotic molecules such as ribose required stabilization depends on whether a granitic continental crust had yet differentiated, because in its absence we see no means for boron to be sufficiently concentrated for borates to be precipitated.

Grutters, M, van Raaphorst W, Epping E, Helder W, de Leeuw JW, Glavin DP, Bada J.  2002.  Preservation of amino acids from in situ-produced bacterial cell wall peptidoglycans in northeastern Atlantic continental margin sediments. Limnology and Oceanography. 47:1521-1524. AbstractWebsite

In this study we present the results of total hydrolysable amino acids (THAA) and amino acid D/L-enantiomers in northeastern Atlantic continental margin sediments. There is increasing evidence that intrinsically labile amino acids are present in old marine sediments as part of a refractory network of peptide-like material. We used amino acid enantiomers to identify the contribution of amino acids from bacterial cell walls to THAA in organic matter ranging from relatively young to 18,000 yr old. The ratio of D/L-amino acids increased with depth in the sediment mixed layer. Application of a transport-racemization-degradation model excludes a significant production of D-amino acids by racemization and implies in situ bacterial production as the main source. Amino acids associated with a refractory pool of bacterial cell walls could account for approximately one third of the THAA deeper in the sediments. We propose that in situ bacterial production and the primary flux of labile organic matter from the water column result in a small but highly reactive pool of amino acids in the surface mixed sediment only, whereas amino acids associated with refractory cell walls persist in marine sediments.