Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration

Hutt, LD, Glavin DP, Bada JL, Mathies RA.  1999.  Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration. Analytical Chemistry. 71:4000-4006.

Date Published:



chips, chromatography, electrochromatography, enantiomers, integration, Mars, microchip, murchison meteorite, separations, technology


Chiral separations of fluorescein isothiocyanate-labeled amino acids have been performed on a microfabricated capillary electrophoresis chip to explore the feasibility of using such devices to analyze for extinct or extant life signs in extraterrestrial environments. The test system consists of a folded electrophoresis channel (19.0 cm long x 150 mu m wide x 20 mu m deep) that was photolithographically fabricated in a 10-cm-diameter glass wafer sandwich, coupled to a laser-excited confocal fluorescence detection apparatus providing subattomole sensitivity. Using a sodium dodecyl sulfate/gamma-cyclodextrin pH 10.0 carbonate electrophoresis buffer and a separation voltage of 550 V/cm at 10 degrees C, baseline resolution was observed for Val, Ala, Glu, and Asp enantiomers and Gly in only 4 min. Enantiomeric ratios were determined for amino acids extracted from the Murchison meteorite, and these values closely matched values determined by HPLC. These results demonstrate the feasibility of using microfabricated lab-on-a-chip systems to analyze extraterrestrial samples for amino acids.