Amino acids in the amber matrix and in entombed insects

Wang, XS, Poinar HN, Poinar GO, Bada JL.  1995.  Amino acids in the amber matrix and in entombed insects. Amber, Resinite, and Fossil Resins. 617( Anderson KB, Crelling JC, Eds.).:255-262., Washington: Amer Chemical Soc


air, ancient, dna, kinetics, racemization


We have investigated the amino acids in both the bulk matrix and in insect inclusions in tree resins ranging in age from <100 years to 130 million years. The amino acid content of the resin matrix averages about 5 ppm and does not systematically vary with the age of the resin. The amino acids in the matrix are likely derived from either plant cells, or microorganisms, encapsulated when the resin solidified. The amino acid content of the insect tissues entombed in amber is less than that in modern insect specimens; this loss may be the result of oxidation reactions. The amino acid compositions of a fly and bee entombed in 30-40 million year old amber are somewhat different from the amino acid profiles of modern insects; this finding suggests that the preserved amino acid pattern under anhydrous conditions may not be the same as in aqueous environments. The amino acid racemization rate in amber insect inclusions is retarded by a factor of >10(4) compared to other geochemical environments on the surface of the Earth. This is also apparently due to the anhydrous properties of the amber matrix. The excellent preservation of amino acids in amber insect inclusions suggests that other biomolecules would also be preserved much better than in other geochemical environments. This conclusion is consistent with the reported successful retrieval of DNA sequences from amber-entombed organisms.