Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N [O] P Q R S T U V W X Y Z   [Show ALL]
Pistone, K, Eisenman I, Ramanathan V.  2014.  Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proceedings of the National Academy of Sciences of the United States of America. 111:3322-3326.   10.1073/pnas.1318201111   AbstractWebsite

The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 +/- 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming.

Strong, C, Foster D, Cherkaev E, Eisenman I, Golden KM.  2017.  On the definition of marginal ice zone width. Journal of Atmospheric and Oceanic Technology. 34:1565-1584.   10.1175/jtech-d-16-0171.1   AbstractWebsite

Sea ice features a dense inner pack ice zone surrounded by a marginal ice zone (MIZ) in which the sea ice properties are modified by interaction with the ice-free open ocean. The width of the MIZ is a fundamental length scale for polar physical and biological dynamics. Several different criteria for establishing MIZ boundaries have emerged in the literature-wave penetration, floe size, sea ice concentration, etc.-and a variety of definitions for the width between the MIZ boundaries have been published. Here, three desirable mathematical properties for defining MIZ width are proposed: invariance with respect to translation and rotation on the sphere; uniqueness at every point in the MIZ; and generality, including nonconvex shapes. The previously published streamline definition is shown to satisfy all three properties, where width is defined as the arc length of a streamline through the solution to Laplaces's equation within the MIZ boundaries, while other published definitions each satisfy only one of the desired properties. When defining MIZ spatial average width from streamline results, the rationale for averaging with respect to distance along both MIZ boundaries was left implicit in prior studies. Here it is made rigorous by developing and applying the mathematics of an analytically tractable idealization of MIZ geometry-the eccentric annulus. Finally, satellite-retrieved Arctic sea ice concentrations are used to investigate how well streamline-based MIZ spatial average width is approximated by alternative definitions that lack desirable mathematical properties or local width values but offer computational efficiency.

Eisenman, I, Untersteiner N, Wettlaufer JS.  2007.  On the reliability of simulated Arctic sea ice in global climate models. Geophysical Research Letters. 34   10.1029/2007gl029914   Website
Wagner, TJW, Stern AA, Dell RW, Eisenman I.  2017.  On the representation of capsizing in iceberg models. Ocean Modelling. 117:88-96.   10.1016/j.ocemod.2017.07.003   AbstractWebsite

Although iceberg models have been used for decades, they have received far more widespread attention in recent years, due in part to efforts to explicitly represent icebergs in climate models. This calls for increased scrutiny of all aspects of typical iceberg models. An important component of iceberg models is the representation of iceberg capsizing, or rolling. Rolling occurs spontaneously when the ratio of iceberg width to height falls below a critical threshold. Here we examine previously proposed representations of this threshold, and we find that there have been crucial flaws in the representation of rolling in many modeling studies to date. We correct these errors and identify an accurate model representation of iceberg rolling. Next, we assess how iceberg rolling influences simulation results in a hierarchy of models. Rolling is found to substantially prolong the lifespan of individual icebergs and allow them to drift farther offshore. However, rolling occurs only after large icebergs have lost most of their initial volume, and it thus has a relatively small impact on the large-scale freshwater distribution in comprehensive model simulations. The results suggest that accurate representations of iceberg rolling may be of particular importance for operational forecast models of iceberg drift, as well as for regional changes in high-resolution climate model simulations. (C) 2017 Elsevier Ltd. All rights reserved.