Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Wagner, TJW, Dell RW, Eisenman I, Keeling RF, Padman L, Severinghaus JP.  2018.  Wave inhibition by sea ice enables trans-Atlantic ice rafting of debris during Heinrich events. Earth and Planetary Science Letters. 495:157-163.   10.1016/j.epsl.2018.05.006   AbstractWebsite

The last glacial period was punctuated by episodes of massive iceberg calving from the Laurentide Ice Sheet, called Heinrich events, which are identified by layers of ice-rafted debris (IRD) in ocean sediment cores from the North Atlantic. The thickness of these IRD layers declines more gradually with distance from the iceberg sources than would be expected based on present-day iceberg drift and decay. Here we model icebergs as passive Lagrangian particles driven by ocean currents, winds, and sea surface temperatures. The icebergs are released in a comprehensive climate model simulation of the last glacial maximum (LGM), as well as a simulation of the modern climate. The two simulated climates result in qualitatively similar distributions of iceberg meltwater and hence debris, with the colder temperatures of the LGM having only a relatively small effect on meltwater spread. In both scenarios, meltwater flux falls off rapidly with zonal distance from the source, in contrast with the more uniform spread of IRD in sediment cores. To address this discrepancy, we propose a physical mechanism that could have prolonged the lifetime of icebergs during Heinrich events. The mechanism involves a surface layer of cold and fresh meltwater formed from, and retained around, large densely packed armadas of icebergs. This leads to wintertime sea ice formation even in relatively low latitudes. The sea ice in turn shields the icebergs from wave erosion, which is the main source of iceberg ablation. We find that sea ice could plausibly have formed around the icebergs during four months each winter. Allowing for four months of sea ice in the model results in a simulated IRD distribution which approximately agrees with the distribution of IRD in sediment cores. (C) 2018 Elsevier B.V. All rights reserved.

Wagner, TJW, Eisenman I.  2015.  How climate model complexity influences sea ice stability. Journal of Climate. 28:3998-4014.   10.1175/jcli-d-14-00654.1   AbstractWebsite

Record lows in Arctic sea ice extent have been making frequent headlines in recent years. The change in albedo when sea ice is replaced by open water introduces a nonlinearity that has sparked an ongoing debate about the stability of the Arctic sea ice cover and the possibility of Arctic "tipping points.'' Previous studies identified instabilities for a shrinking ice cover in two types of idealized climate models: (i) annual-mean latitudinally varying diffusive energy balance models (EBMs) and (ii) seasonally varying single-column models (SCMs). The instabilities in these low-order models stand in contrast with results from comprehensive global climate models (GCMs), which typically do not simulate any such instability. To help bridge the gap between low-order models and GCMs, an idealized model is developed that includes both latitudinal and seasonal variations. The model reduces to a standard EBM or SCM as limiting cases in the parameter space, thus reconciling the two previous lines of research. It is found that the stability of the ice cover vastly increases with the inclusion of spatial communication via meridional heat transport or a seasonal cycle in solar forcing, being most stable when both are included. If the associated parameters are set to values that correspond to the current climate, the ice retreat is reversible and there is no instability when the climate is warmed. The two parameters have to be reduced by at least a factor of 3 for instability to occur. This implies that the sea ice cover may be substantially more stable than has been suggested in previous idealized modeling studies.