Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
P
Pistone, K, Eisenman I, Ramanathan V.  2014.  Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proceedings of the National Academy of Sciences of the United States of America. 111:3322-3326.   10.1073/pnas.1318201111   AbstractWebsite

The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 +/- 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming.

S
Sun, S, Eisenman I, Stewart AL.  2016.  The influence of Southern Ocean surface buoyancy forcing on glacial-interglacial changes in the global deep ocean stratification. Geophysical Research Letters. 43:8124-8132.   10.1002/2016gl070058   AbstractWebsite

Previous studies have suggested that the global ocean density stratification below approximate to 3000m is approximately set by its direct connection to the Southern Ocean surface density, which in turn is constrained by the atmosphere. Here the role of Southern Ocean surface forcing in glacial-interglacial stratification changes is investigated using a comprehensive climate model and an idealized conceptual model. Southern Ocean surface forcing is found to control the global deep ocean stratification up to approximate to 2000m, which is much shallower than previously thought and contrary to the expectation that the North Atlantic surface forcing should strongly influence the ocean at intermediate depths. We show that this is due to the approximately fixed surface freshwater fluxes, rather than a fixed surface density distribution in the Southern Ocean as was previously assumed. These results suggest that Southern Ocean surface freshwater forcing controls glacial-interglacial stratification changes in much of the deep ocean.

W
Wagner, TJW, Eisenman I.  2017.  How climate model biases skew the distribution of iceberg meltwater. Geophysical Research Letters.   10.1002/2016GL071645   Abstract

The discharge of icebergs into the polar oceans is expected to increase over the coming century, which raises the importance of accurate representations of icebergs in global climate models (GCMs) used for future projections. Here we analyze the prospects for interactive icebergs in GCMs by forcing an iceberg drift and decay model with circulation and temperature fields from (i) state-of-the-art GCM output and (ii) an observational state estimate. The spread of meltwater is found to be smaller for the GCM than for the observational state estimate, despite a substantial high wind bias in the GCM—a bias that is similar to most current GCMs. We argue that this large-scale reduction in the spread of meltwater occurs primarily due to localized differences in ocean currents, which may be related to the coarseness of the horizontal resolution in the GCM. The high wind bias in the GCM is shown to have relatively little impact on the meltwater distribution, despite Arctic iceberg drift typically being dominated by the wind forcing. We find that this is due to compensating effects between faster drift under stronger winds and larger wind-driven wave erosion. These results may have implications for future changes in the Atlantic meridional overturning circulation simulated with iceberg-enabled GCMs.