Publications

Export 10 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Jones, JM, Gille ST, Goosse H, Abram NJ, Canziani PO, Charman DJ, Clem KR, Crosta X, de Lavergne C, Eisenman I, England MH, Fogt RL, Frankcombe LM, Marshall GJ, Masson-Delmotte V, Morrison AK, Orsi AJ, Raphael MN, Renwick JA, Schneider DP, Simpkins GR, Steig EJ, Stenni B, Swingedouw D, Vance TR.  2016.  Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nature Climate Change. 6:917–926.   10.1038/NCLIMATE3103   Abstract

Understanding the causes of recent climatic trends and variability in the high-latitude Southern Hemisphere is hampered by a short instrumental record. Here, we analyse recent atmosphere, surface ocean and sea-ice observations in this region and assess their trends in the context of palaeoclimate records and climate model simulations. Over the 36-year satellite era, significant linear trends in annual mean sea-ice extent, surface temperature and sea-level pressure are superimposed on large interannual to decadal variability. Most observed trends, however, are not unusual when compared with Antarctic palaeoclimate records of the past two centuries. With the exception of the positive trend in the Southern Annular Mode, climate model simulations that include anthropogenic forcing are not compatible with the observed trends. This suggests that natural variability overwhelms the forced response in the observations, but the models may not fully represent this natural variability or may overestimate the magnitude of the forced response.

Eisenman, I, Schneider T, Battisti DS, Bitz CM.  2011.  Consistent Changes in the Sea Ice Seasonal Cycle in Response to Global Warming. Journal of Climate. 24:5325-5335.   10.1175/2011jcli4051.1   Website
Sun, ST, Eisenman I, Stewart AL.  2018.  Does Southern Ocean surface forcing shape the global ocean overturning circulation? Geophysical Research Letters. 45:2413-2423.   10.1002/2017gl076437   AbstractWebsite

Paleoclimate proxy data suggest that the Atlantic Meridional Overturning Circulation (AMOC) was shallower at the Last Glacial Maximum (LGM) than its preindustrial (PI) depth. Previous studies have suggested that this shoaling necessarily accompanies Antarctic sea ice expansion at the LGM. Here the influence of Southern Ocean surface forcing on the AMOC depth is investigated using ocean-only simulations from a state-of-the-art climate model with surface forcing specified from the output of previous coupled PI and LGM simulations. In contrast to previous expectations, we find that applying LGM surface forcing in the Southern Ocean and PI surface forcing elsewhere causes the AMOC to shoal only about half as much as when LGM surface forcing is applied globally. We show that this occurs because diapycnal mixing renders the Southern Ocean overturning circulation more diabatic than previously assumed, which diminishes the influence of Southern Ocean surface buoyancy forcing on the depth of the AMOC.

Merlis, TM, Schneider T, Bordoni S, Eisenman I.  2013.  Hadley Circulation Response to Orbital Precession. Part I: Aquaplanets. Journal of Climate. 26:740-753.   10.1175/jcli-d-11-00716.1   AbstractWebsite

The response of the monsoonal and annual-mean Hadley circulation to orbital precession is examined in an idealized atmospheric general circulation model with an aquaplanet slab-ocean lower boundary. Contrary to expectations, the simulated monsoonal Hadley circulation is weaker when perihelion occurs at the summer solstice than when aphelion occurs at the summer solstice. The angular momentum balance and energy balance are examined to understand the mechanisms that produce this result. That the summer with stronger insolation has a weaker circulation is the result of an increase in the atmosphere's energetic stratification, the gross moist stability, which increases more than the amount required to balance the change in atmospheric energy flux divergence necessitated by the change in top-of-atmosphere net radiation. The solstice-season changes result in annual-mean Hadley circulation changes (e.g., changes in circulation strength).

Merlis, TM, Schneider T, Bordoni S, Eisenman I.  2013.  Hadley Circulation Response to Orbital Precession. Part II: Subtropical Continent. Journal of Climate. 26:754-771.   10.1175/jcli-d-12-00149.1   AbstractWebsite

The response of the monsoonal and annual-mean Hadley circulation to orbital precession is examined in an idealized atmospheric general circulation model with a simplified representation of land surface processes in subtropical latitudes. When perihelion occurs in the summer of a hemisphere with a subtropical continent, changes in the top-of-atmosphere energy balance, together with a poleward shift of the monsoonal circulation boundary, lead to a strengthening of the monsoonal circulation. Spatial variations in surface heat capacity determine whether radiative perturbations are balanced by energy storage or by atmospheric energy fluxes. Although orbital precession does not affect annual-mean insolation, the annual-mean Hadley circulation does respond to orbital precession because its sensitivity to radiative changes varies over the course of the year: the monsoonal circulation in summer is near the angular momentum-conserving limit and responds directly to radiative changes; whereas in winter, the circulation is affected by the momentum fluxes of extratropical eddies and is less sensitive to radiative changes.

Sun, S, Eisenman I, Stewart AL.  2016.  The influence of Southern Ocean surface buoyancy forcing on glacial-interglacial changes in the global deep ocean stratification. Geophysical Research Letters. 43:8124-8132.   10.1002/2016gl070058   AbstractWebsite

Previous studies have suggested that the global ocean density stratification below approximate to 3000m is approximately set by its direct connection to the Southern Ocean surface density, which in turn is constrained by the atmosphere. Here the role of Southern Ocean surface forcing in glacial-interglacial stratification changes is investigated using a comprehensive climate model and an idealized conceptual model. Southern Ocean surface forcing is found to control the global deep ocean stratification up to approximate to 2000m, which is much shallower than previously thought and contrary to the expectation that the North Atlantic surface forcing should strongly influence the ocean at intermediate depths. We show that this is due to the approximately fixed surface freshwater fluxes, rather than a fixed surface density distribution in the Southern Ocean as was previously assumed. These results suggest that Southern Ocean surface freshwater forcing controls glacial-interglacial stratification changes in much of the deep ocean.

Strong, C, Foster D, Cherkaev E, Eisenman I, Golden KM.  2017.  On the definition of marginal ice zone width. Journal of Atmospheric and Oceanic Technology. 34:1565-1584.   10.1175/jtech-d-16-0171.1   AbstractWebsite

Sea ice features a dense inner pack ice zone surrounded by a marginal ice zone (MIZ) in which the sea ice properties are modified by interaction with the ice-free open ocean. The width of the MIZ is a fundamental length scale for polar physical and biological dynamics. Several different criteria for establishing MIZ boundaries have emerged in the literature-wave penetration, floe size, sea ice concentration, etc.-and a variety of definitions for the width between the MIZ boundaries have been published. Here, three desirable mathematical properties for defining MIZ width are proposed: invariance with respect to translation and rotation on the sphere; uniqueness at every point in the MIZ; and generality, including nonconvex shapes. The previously published streamline definition is shown to satisfy all three properties, where width is defined as the arc length of a streamline through the solution to Laplaces's equation within the MIZ boundaries, while other published definitions each satisfy only one of the desired properties. When defining MIZ spatial average width from streamline results, the rationale for averaging with respect to distance along both MIZ boundaries was left implicit in prior studies. Here it is made rigorous by developing and applying the mathematics of an analytically tractable idealization of MIZ geometry-the eccentric annulus. Finally, satellite-retrieved Arctic sea ice concentrations are used to investigate how well streamline-based MIZ spatial average width is approximated by alternative definitions that lack desirable mathematical properties or local width values but offer computational efficiency.

Wagner, TJW, Stern AA, Dell RW, Eisenman I.  2017.  On the representation of capsizing in iceberg models. Ocean Modelling. 117:88-96.   10.1016/j.ocemod.2017.07.003   AbstractWebsite

Although iceberg models have been used for decades, they have received far more widespread attention in recent years, due in part to efforts to explicitly represent icebergs in climate models. This calls for increased scrutiny of all aspects of typical iceberg models. An important component of iceberg models is the representation of iceberg capsizing, or rolling. Rolling occurs spontaneously when the ratio of iceberg width to height falls below a critical threshold. Here we examine previously proposed representations of this threshold, and we find that there have been crucial flaws in the representation of rolling in many modeling studies to date. We correct these errors and identify an accurate model representation of iceberg rolling. Next, we assess how iceberg rolling influences simulation results in a hierarchy of models. Rolling is found to substantially prolong the lifespan of individual icebergs and allow them to drift farther offshore. However, rolling occurs only after large icebergs have lost most of their initial volume, and it thus has a relatively small impact on the large-scale freshwater distribution in comprehensive model simulations. The results suggest that accurate representations of iceberg rolling may be of particular importance for operational forecast models of iceberg drift, as well as for regional changes in high-resolution climate model simulations. (C) 2017 Elsevier Ltd. All rights reserved.

Merlis, TM, Schneider T, Bordoni S, Eisenman I.  2013.  The Tropical Precipitation Response to Orbital Precession. Journal of Climate. 26:2010-2021.   10.1175/jcli-d-12-00186.1   AbstractWebsite

Orbital precession changes the seasonal distribution of insolation at a given latitude but not the annual mean. Hence, the correlation of paleoclimate proxies of annual-mean precipitation with orbital precession implies a nonlinear rectification in the precipitation response to seasonal solar forcing. It has previously been suggested that the relevant nonlinearity is that of the Clausius-Clapeyron relationship. Here it is argued that a different nonlinearity related to moisture advection by the atmospheric circulation is more important. When perihelion changes from one hemisphere's summer solstice to the other's in an idealized aquaplanet atmospheric general circulation model, annual-mean precipitation increases in the hemisphere with the brighter, warmer summer and decreases in the other hemisphere, in qualitative agreement with paleoclimate proxies that indicate such hemispherically antisymmetric climate variations. The rectification mechanism that gives rise to the precipitation changes is identified by decomposing the perturbation water vapor budget into "thermodynamic" and "dynamic" components. Thermodynamic changes (caused by changes in humidity with unchanged winds) dominate the hemispherically antisymmetric annual-mean precipitation response to precession in the absence of land-sea contrasts. The nonlinearity that enables the thermodynamic changes to affect annual-mean precipitation is a nonlinearity of moisture advection that arises because precession-induced seasonal humidity changes correlate with the seasonal cycle in low-level convergence. This interpretation is confirmed using simulations in which the Clausius-Clapeyron relationship is explicitly linearized. The thermodynamic mechanism also operates in simulations with an idealized representation of land, although in these simulations the dynamic component of the precipitation changes is also important, adding to the thermodynamic precipitation changes in some latitudes and offsetting it in others.

Wagner, TJW, Dell RW, Eisenman I, Keeling RF, Padman L, Severinghaus JP.  2018.  Wave inhibition by sea ice enables trans-Atlantic ice rafting of debris during Heinrich events. Earth and Planetary Science Letters. 495:157-163.   10.1016/j.epsl.2018.05.006   AbstractWebsite

The last glacial period was punctuated by episodes of massive iceberg calving from the Laurentide Ice Sheet, called Heinrich events, which are identified by layers of ice-rafted debris (IRD) in ocean sediment cores from the North Atlantic. The thickness of these IRD layers declines more gradually with distance from the iceberg sources than would be expected based on present-day iceberg drift and decay. Here we model icebergs as passive Lagrangian particles driven by ocean currents, winds, and sea surface temperatures. The icebergs are released in a comprehensive climate model simulation of the last glacial maximum (LGM), as well as a simulation of the modern climate. The two simulated climates result in qualitatively similar distributions of iceberg meltwater and hence debris, with the colder temperatures of the LGM having only a relatively small effect on meltwater spread. In both scenarios, meltwater flux falls off rapidly with zonal distance from the source, in contrast with the more uniform spread of IRD in sediment cores. To address this discrepancy, we propose a physical mechanism that could have prolonged the lifetime of icebergs during Heinrich events. The mechanism involves a surface layer of cold and fresh meltwater formed from, and retained around, large densely packed armadas of icebergs. This leads to wintertime sea ice formation even in relatively low latitudes. The sea ice in turn shields the icebergs from wave erosion, which is the main source of iceberg ablation. We find that sea ice could plausibly have formed around the icebergs during four months each winter. Allowing for four months of sea ice in the model results in a simulated IRD distribution which approximately agrees with the distribution of IRD in sediment cores. (C) 2018 Elsevier B.V. All rights reserved.