Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Jones, JM, Gille ST, Goosse H, Abram NJ, Canziani PO, Charman DJ, Clem KR, Crosta X, de Lavergne C, Eisenman I, England MH, Fogt RL, Frankcombe LM, Marshall GJ, Masson-Delmotte V, Morrison AK, Orsi AJ, Raphael MN, Renwick JA, Schneider DP, Simpkins GR, Steig EJ, Stenni B, Swingedouw D, Vance TR.  2016.  Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nature Climate Change. 6:917–926.   10.1038/NCLIMATE3103   Abstract

Understanding the causes of recent climatic trends and variability in the high-latitude Southern Hemisphere is hampered by a short instrumental record. Here, we analyse recent atmosphere, surface ocean and sea-ice observations in this region and assess their trends in the context of palaeoclimate records and climate model simulations. Over the 36-year satellite era, significant linear trends in annual mean sea-ice extent, surface temperature and sea-level pressure are superimposed on large interannual to decadal variability. Most observed trends, however, are not unusual when compared with Antarctic palaeoclimate records of the past two centuries. With the exception of the positive trend in the Southern Annular Mode, climate model simulations that include anthropogenic forcing are not compatible with the observed trends. This suggests that natural variability overwhelms the forced response in the observations, but the models may not fully represent this natural variability or may overestimate the magnitude of the forced response.

Finnegan, S, Bergmann K, Eiler JM, Jones DS, Fike DA, Eisenman I, Hughes NC, Tripati AK, Fischer WW.  2011.  The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation. Science. 331:903-906.   10.1126/science.1200803   Website
Ewing, RC, Eisenman I, Lamb MP, Poppick L, Maloof AC, Fischer WW.  2014.  New constraints on equatorial temperatures during a Late Neoproterozoic snowball Earth glaciation. Earth and Planetary Science Letters. 406:110-122.   10.1016/j.epsl.2014.09.017   AbstractWebsite

Intense glaciation during the end of Cryogenian time (similar to 635 million years ago) marks the coldest climate state in Earth history - a time when glacial deposits accumulated at low, tropical paleolatitudes. The leading idea to explain these deposits, the snowball Earth hypothesis, predicts globally frozen surface conditions and subfreezing temperatures, with global climate models placing surface temperatures in the tropics between -20 degrees C and -60 degrees C. However, precise paleosurface temperatures based upon geologic constraints have remained elusive and the global severity of the glaciation undetermined. Here we make new geologic observations of tropical periglacial, aeolian and fluvial sedimentary structures formed during the end-Cryogenian, Marinoan glaciation in South Australia; these observations allow us to constrain ancient surface temperatures. We find periglacial sand wedges and associated deformation suggest that ground temperatures were sufficiently warm to allow for ductile deformation of a sandy regolith. The wide range of deformation structures likely indicate the presence of a paleoactive layer that penetrated 2-4 m below the ground surface. These observations, paired with a model of ground temperature forced by solar insolation, constrain the local mean annual surface temperature to within a few degrees of freezing. This temperature constraint matches well with our observations of fluvial deposits, which require temperatures sufficiently warm for surface runoff. Although this estimate coincides with one of the coldest near sea-level tropical temperatures in Earth history, if these structures represent peak Marinaon glacial conditions, they do not support the persistent deep freeze of the snowball Earth hypothesis. Rather, surface temperatures near 0 degrees C allow for regions of seasonal surface melting, atmosphere-ocean coupling and possible tropical refugia for early metazoans. If instead these structures formed during glacial onset or deglaciation, then they have implications for the timescale and character for the transition into or out of a snowball state. (C) 2014 Elsevier B.V. All rights reserved.

Strong, C, Foster D, Cherkaev E, Eisenman I, Golden KM.  2017.  On the definition of marginal ice zone width. Journal of Atmospheric and Oceanic Technology. 34:1565-1584.   10.1175/jtech-d-16-0171.1   AbstractWebsite

Sea ice features a dense inner pack ice zone surrounded by a marginal ice zone (MIZ) in which the sea ice properties are modified by interaction with the ice-free open ocean. The width of the MIZ is a fundamental length scale for polar physical and biological dynamics. Several different criteria for establishing MIZ boundaries have emerged in the literature-wave penetration, floe size, sea ice concentration, etc.-and a variety of definitions for the width between the MIZ boundaries have been published. Here, three desirable mathematical properties for defining MIZ width are proposed: invariance with respect to translation and rotation on the sphere; uniqueness at every point in the MIZ; and generality, including nonconvex shapes. The previously published streamline definition is shown to satisfy all three properties, where width is defined as the arc length of a streamline through the solution to Laplaces's equation within the MIZ boundaries, while other published definitions each satisfy only one of the desired properties. When defining MIZ spatial average width from streamline results, the rationale for averaging with respect to distance along both MIZ boundaries was left implicit in prior studies. Here it is made rigorous by developing and applying the mathematics of an analytically tractable idealization of MIZ geometry-the eccentric annulus. Finally, satellite-retrieved Arctic sea ice concentrations are used to investigate how well streamline-based MIZ spatial average width is approximated by alternative definitions that lack desirable mathematical properties or local width values but offer computational efficiency.