Physiological proteomics of the uncultured endosymbiont of <i>Riftia pachyptila</i>

Citation:
Markert, S, Arndt C, Felbeck H, Becher D, Sievert SM, Hugler M, Albrecht D, Robidart J, Bench S, Feldman RA, Hecker M, Schweder T.  2007.  Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science. 315:247-250.

Date Published:

Jan

Keywords:

Animals, bacteria, carbon fixation, chemoautotrophic symbionts, deep-sea vents, jones, purification, trophosome, worm

Abstract:

The bacterial endosymbiont of the deep-sea tube worm Riftia pachyptila has never been successfully cultivated outside its host. In the absence of cultivation data, we have taken a proteomic approach based on the metagenome sequence to study the metabolism of this peculiar microorganism in detail. As one result, we found that three major sulfide oxidation proteins constitute similar to 12% of the total cytosolic proteome, which highlights the essential role of these enzymes for the symbiont's energy metabolism. Unexpectedly, the symbiont uses the reductive tricarboxylic acid cycle in addition to the previously identified Calvin cycle for CO2 fixation.

Notes:

n/a

Website

DOI:

10.1126/science.1132913