Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N [O] P Q R S T U V W X Y Z   [Show ALL]
O
Walker, CC, Bassis JN, Fricker HA, Czerwinski RJ.  2015.  Observations of interannual and spatial variability in rift propagation in the Amery Ice Shelf, Antarctica, 2002-14. Journal of Glaciology. 61:243-252.   10.3189/2015JoG14J151   AbstractWebsite

Iceberg calving and basal melting are the two primary mass loss processes from the Antarctic ice sheet, accounting for approximately equal amounts of mass loss. Basal melting under ice shelves has been increasingly well constrained in recent work, but changes in iceberg calving rates remain poorly quantified. Here we examine the processes that precede iceberg calving, and focus on initiation and propagation of ice-shelf rifts. Using satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging Spectroradiometer (MISR), we monitored five active rifts on the Amery Ice Shelf, Antarctica, from 2002 to 2014. We found a strong seasonal component: propagation rates were highest during (austral) summer and nearly zero during winter. We found substantial variability in summer propagation rates, but found no evidence that the variability was correlated with large-scale environmental drivers, such as atmospheric temperature, winds or sea-ice concentration. We did find a positive correlation between large propagation events and the arrival of tsunamis in the region. The variability appears to be related to visible structural boundaries within the ice shelf, e.g. suture zones or crevasse fields. This suggests that a complete understanding of rift propagation and iceberg calving needs to consider local heterogeneities within an ice shelf.

Padman, L, Siegfried MR, Fricker HA.  2018.  Ocean tide influences on the Antarctic and Greenland ice sheets. Reviews of Geophysics. 56:142-184.   10.1002/2016rg000546   AbstractWebsite

Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.

Holland, PR, Brisbourne A, Corr HFJ, McGrath D, Purdon K, Paden J, Fricker HA, Paolo FS, Fleming AH.  2015.  Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning. Cryosphere. 9:1005-1024.   10.5194/tc-9-1005-2015   AbstractWebsite

The catastrophic collapses of Larsen A and B ice shelves on the eastern Antarctic Peninsula have caused their tributary glaciers to accelerate, contributing to sea-level rise and freshening the Antarctic Bottom Water formed nearby. The surface of Larsen C Ice Shelf (LCIS), the largest ice shelf on the peninsula, is lowering. This could be caused by unbalanced ocean melting (ice loss) or enhanced firn melting and compaction (englacial air loss). Using a novel method to analyse eight radar surveys, this study derives separate estimates of ice and air thickness changes during a 15-year period. The uncertainties are considerable, but the primary estimate is that the surveyed lowering (0.066 +/- 0.017 myr(-1)) is caused by both ice loss (0.28 +/- 0.18 myr(-1)) and firn-air loss (0.037 +/- 0.026 myr(-1)). The ice loss is much larger than the air loss, but both contribute approximately equally to the lowering because the ice is floating. The ice loss could be explained by high basal melting and/or ice divergence, and the air loss by low surface accumulation or high surface melting and/or compaction. The primary estimate therefore requires that at least two forcings caused the surveyed lowering. Mechanisms are discussed by which LCIS stability could be compromised in the future. The most rapid pathways to collapse are offered by the ungrounding of LCIS from Bawden Ice Rise or ice-front retreat past a "compressive arch" in strain rates. Recent evidence suggests that either mechanism could pose an imminent risk.

Padman, L, Costa DP, Dinniman MS, Fricker HA, Goebel ME, Huckstadt LA, Humbert A, Joughin I, Lenaerts JTM, Ligtenberg SRM, Scambos T, van den Broeke MR.  2012.  Oceanic controls on the mass balance of Wilkins Ice Shelf, Antarctica. Journal of Geophysical Research-Oceans. 117   10.1029/2011jc007301   AbstractWebsite

Several Antarctic Peninsula (AP) ice shelves have lost significant fractions of their volume over the past decades, coincident with rapid regional climate change. Wilkins Ice Shelf (WIS), on the western side of the AP, is the most recent, experiencing a sequence of large calving events in 2008 and 2009. We analyze the mass balance for WIS for the period 1992-2008 and find that the averaged rate of ice-shelf thinning was similar to 0.8 m a(-1), driven by a mean basal melt rate of < w(b)> = 1.3 +/- 0.4 m a(-1). Interannual variability was large, associated with changes in both surface mass accumulation and < w(b)>. Basal melt rate declined significantly around 2000 from 1.8 +/- 0.4 m a(-1) for 1992-2000 to similar to 0.75 +/- 0.55 m a(-1) for 2001-2008; the latter value corresponding to approximately steady-state ice-shelf mass. Observations of ocean temperature T obtained during 2007-2009 by instrumented seals reveal a cold, deep halo of Winter Water (WW; T approximate to - 1.6 degrees C) surrounding WIS. The base of the WW in the halo is similar to 170 m, approximately the mean ice draft for WIS. We hypothesize that the transition in < w(b)> in 2000 was caused by a small perturbation (similar to 10-20 m) in the relative depths of the ice base and the bottom of the WW layer in the halo. We conclude that basal melting of thin ice shelves like WIS is very sensitive to upper-ocean and coastal processes that act on shorter time and space scales than those affecting basal melting of thicker West Antarctic ice shelves such as George VI and Pine Island Glacier.