Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2007
Borsa, AA, Fricker HA, Bills BG, Minster JB, Carabajal CC, Quinn KJ.  2007.  Topography of the salar de Uyuni, Bolivia from kinematic GPS. Geophysical Journal International. 172:31-40.   10.1111/j.1365-246X.2007.03604.x   AbstractWebsite

The salar de Uyuni in the Bolivian Andes is the largest salt flat on Earth, exhibiting less than 1 m of vertical relief over an area of 9000 km(2). We report on a kinematic Global Positioning System (GPS) survey of a 45-by-54 km area in the eastern salar, conducted in September 2002 to provide ground truth for the Ice Cloud and land Elevation Satellite (ICESat) mission. GPS post-processing included corrections for long-period GPS noise that significantly improved survey accuracy. We fit corrected GPS trajectories with 2-D Fourier basis functions, from which we created a digital elevation model (DEM) of the surface whose absolute accuracy we estimate to be at least 2.2 cm RMSE. With over two magnitudes better vertical resolution than the Shuttle Radar Topography Mission data, this DEM reveals decimetre-level topography that is completely absent in other topographic data sets. Longer wavelengths in the DEM correlate well with mapped gravity, suggesting a connection between broad-scale salar topography and the geoid similar to that seen over the oceans.

Borsa, AA, Minster JB, Bills BG, Fricker HA.  2007.  Modeling long-period noise in kinematic GPS applications. Journal of Geodesy. 81:157-170.   10.1007/s00190-006-0097-x   AbstractWebsite

We develop and test an algorithm for modeling and removing elevation error in kinematic GPS trajectories in the context of a kinematic GPS survey of the salar de Uyuni, Bolivia. Noise in the kinematic trajectory ranges over 15 cm and is highly autocorrelated, resulting in significant contamination of the topographic signal. We solve for a noise model using crossover differences at trajectory intersections as constraints in a least-squares inversion. Validation of the model using multiple realizations of synthetic/simulated noise shows an average decrease in root-mean-square-error (RMSE) by a factor of four. Applying the model to data from the salar de Uyuni survey, we find that crossover differences drop by a factor of eight (from an RMSE of 5.6 to 0.7 cm), and previously obscured topographic features are revealed in a plan view of the corrected trajectory. We believe that this algorithm can be successfully adapted to other survey methods that employ kinematic GPS for positioning.

Bassis, JN, Fricker HA, Coleman R, Bock Y, Behrens J, Darnell D, Okal M, Minster JB.  2007.  Seismicity and deformation associated with ice-shelf rift propagation. Journal of Glaciology. 53:523-536.   10.3189/002214307784409207   AbstractWebsite

Previous observations have shown that rift propagation on the Amery Ice Shelf (AIS), East Antarctica, is episodic, occurring in bursts of several hours with typical recurrence times of several weeks. Propagation events were deduced from seismic swarms (detected with seismometers) concurrent with rapid rift widening (detected with GPS receivers). In this study, we extend these results by deploying seismometers and GPS receivers in a dense network around the tip of a propagating rift on the AIS over three field seasons (2002/03, 2004/05 and 2005/06). The pattern of seismic event locations shows that icequakes cluster along the rift axis, extending several kilometers back from where the rift tip was visible in the field. Patterns of icequake event locations also appear aligned with the ice-shelf flow direction, along transverse-to-rift crevasses. However, we found some key differences in the seismicity between field seasons. Both the number of swarms and the number of events within each swarm decreased during the final field season. The timing of the slowdown closely corresponds to the rift tip entering a suture zone, formed where two ice streams merge upstream. Beneath the suture zone lies a thick band of marine ice. We propose two hypotheses for the observed slowdown: (1) defects within the ice in the suture zone cause a reduction in stress concentration ahead of the rift tip; (2) increased marine ice thickness in the rift path slows propagation. We show that the size-frequency distribution of icequakes approximately follows a power law, similar to the well-known Gutenberg-Richter law for earthquakes. However, large icequakes are not preceded by foreshocks nor are they followed by aftershocks. Thus rift-related seismicity differs from the classic foreshock and aftershock distribution that is characteristic of large earth quakes.