Publications

Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
2015
Holland, PR, Brisbourne A, Corr HFJ, McGrath D, Purdon K, Paden J, Fricker HA, Paolo FS, Fleming AH.  2015.  Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning. Cryosphere. 9:1005-1024.   10.5194/tc-9-1005-2015   AbstractWebsite

The catastrophic collapses of Larsen A and B ice shelves on the eastern Antarctic Peninsula have caused their tributary glaciers to accelerate, contributing to sea-level rise and freshening the Antarctic Bottom Water formed nearby. The surface of Larsen C Ice Shelf (LCIS), the largest ice shelf on the peninsula, is lowering. This could be caused by unbalanced ocean melting (ice loss) or enhanced firn melting and compaction (englacial air loss). Using a novel method to analyse eight radar surveys, this study derives separate estimates of ice and air thickness changes during a 15-year period. The uncertainties are considerable, but the primary estimate is that the surveyed lowering (0.066 +/- 0.017 myr(-1)) is caused by both ice loss (0.28 +/- 0.18 myr(-1)) and firn-air loss (0.037 +/- 0.026 myr(-1)). The ice loss is much larger than the air loss, but both contribute approximately equally to the lowering because the ice is floating. The ice loss could be explained by high basal melting and/or ice divergence, and the air loss by low surface accumulation or high surface melting and/or compaction. The primary estimate therefore requires that at least two forcings caused the surveyed lowering. Mechanisms are discussed by which LCIS stability could be compromised in the future. The most rapid pathways to collapse are offered by the ungrounding of LCIS from Bawden Ice Rise or ice-front retreat past a "compressive arch" in strain rates. Recent evidence suggests that either mechanism could pose an imminent risk.

2014
Holt, TO, Glasser NF, Fricker HA, Padman L, Luckman A, King O, Quincey DJ, Siegfried MR.  2014.  The structural and dynamic responses of Stange Ice Shelf to recent environmental change. Antarctic Science. 26:646-660.   10.1017/s095410201400039x   AbstractWebsite

Stange Ice Shelf is the most south-westerly ice shelf on the Antarctic Peninsula, a region where positive trends in atmospheric and oceanic temperatures have been recently documented. In this paper, we use a range of remotely sensed datasets to evaluate the structural and dynamic responses of Stange Ice Shelf to these environmental changes. Ice shelf extent and surface structures were examined at regular intervals from optical and radar satellite imagery between 1973 and 2011. Surface speeds were estimated in 1989, 2004 and 2010 by tracking surface features in successive satellite images. Surface elevation change was estimated using radar altimetry data acquired between 1992 and 2008 by the European Remote Sensing Satellite (ERS) -1, -2 and Envisat. The mean number of surface melt days was estimated using the intensity of backscatter from Envisat's Advanced Synthetic Aperture Radar instrument between 2006 and 2012. These results show significant shear fracturing in the southern portion of the ice shelf linked to enhanced flow speed as a consequence of measured thinning. However, we conclude that, despite the observed changes, Stange Ice Shelf is currently stable.

2013
Walker, CC, Bassis JN, Fricker HA, Czerwinski RJ.  2013.  Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring. Journal of Geophysical Research-Earth Surface. 118:2354-2364.   10.1002/2013jf002742   AbstractWebsite

Iceberg calving from ice shelves accounts for nearly half of the mass loss from the Antarctic Ice Sheet, yet our understanding of this process is limited. The precursor to iceberg calving is large through-cutting fractures, called rifts, that can propagate for decades after they have initiated until they become iceberg detachment boundaries. To improve our knowledge of rift propagation, we monitored the lengths of 78 rifts in 13 Antarctic ice shelves using satellite imagery from the Moderate Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer between 2002 and 2012. This data set allowed us to monitor trends in rift propagation over the past decade and test if variation in trends is controlled by variable environmental forcings. We found that 43 of the 78 rifts were dormant, i.e., propagated less than 500 m over the observational interval. We found only seven rifts propagated continuously throughout the decade. An additional eight rifts propagated for at least 2 years prior to arresting and remaining dormant for the rest of the decade, and 13 rifts exhibited isolated sudden bursts of propagation after 2 or more years of dormancy. Twelve of the fifteen active rifts were initiated at the ice shelf fronts, suggesting that front-initiated rifts are more active than across-flow rifts. Although we did not find a link between the observed variability in rift propagation rate and changes in atmospheric temperature or sea ice concentration correlated with, we did find a statistically significant correlation between the arrival of tsunamis and propagation of front-initiated rifts in eight ice shelves. This suggests a connection between ice shelf rift propagation and mechanical ocean interaction that needs to be better understood.

2005
Bassis, JN, Coleman R, Fricker HA, Minster JB.  2005.  Episodic propagation of a rift on the Amery Ice Shelf, East Antarctica. Geophysical Research Letters. 32   10.1029/2004gl022048   AbstractWebsite

We investigate ice shelf rift propagation using a combination of GPS and seismic measurements near the tip of an active rift in the Amery Ice Shelf. These measurements reveal that propagation occurs in episodic bursts, which were identified based on swarms of seismicity accompanied by rapid rift widening. The bursts last approximately 4 hours and are separated by 10-24 days. In between bursts, the rift widens at a rate comparable to that of ice shelf spreading. Comparison of automatic weather station data and tidal amplitudes show that the propagation bursts are not directly triggered by winds or tides, suggesting that rift propagation is driven by the background glaciological stress in the ice shelf. We show that the ice debris that partly fills the rift may play a role in controlling the rate of propagation.

Fricker, HA, Young NW, Coleman R, Bassis JN, Minster JB.  2005.  Multi-year monitoring of rift propagation on the Amery Ice Shelf, East Antarctica. Geophysical Research Letters. 32   10.1029/2004gl021036   AbstractWebsite

We use satellite imagery from four sensors (Multi-angle Imaging SpectroRadiometer (MISR), Enhanced Thematic Mapper (ETM), and RADARSAT and ERS Synthetic Aperture Radar (SAR) to monitor the lengths of two rifts on the Amery Ice Shelf, from 1996 to 2004. We find that the rifts have each been propagating at a steady annual rate for the past 5 years. Superimposed on this steady rate is a seasonal signal, where propagation rates are significantly higher in the summer period (i.e., September-April) than in the winter period (i.e., April-September). Possible causes of this summer-winter effect are changing properties of the ice melange, which fills the rifts, and seasonal changes in ocean circulation beneath the ice shelf.