Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Siegfried, MR, Fricker HA, Carter SP, Tulaczyk S.  2016.  Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica. Geophysical Research Letters. 43:2640-2648.   10.1002/2016gl067758   AbstractWebsite

Height change anomalies in satellite altimeter data have been interpreted as the surface expressions of basal water moving into and out of subglacial lakes. These signals have been mapped throughout Antarctica on timescales of months to years, but only broad connections have been made between active lakes and ice dynamics. We present the first high-frequency observations of ice velocity evolution due to a cascading subglacial lake drainage event, collected over 5years (2010-2015) using Global Positioning System data on Whillans and Mercer ice streams, West Antarctica. We observed three episodic ice velocity changes over 2years, where flow speed increased by up to 4%, as well as an 11month disruption of the tidally modulated stick-slip cycle that dominates regional ice motion. Our observations reveal that basal conditions of an Antarctic ice stream can rapidly evolve and drive a dynamic ice response on subannual timescales, which can bias observations used to infer long-term ice sheet changes.

Walker, CC, Bassis JN, Fricker HA, Czerwinski RJ.  2013.  Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring. Journal of Geophysical Research-Earth Surface. 118:2354-2364.   10.1002/2013jf002742   AbstractWebsite

Iceberg calving from ice shelves accounts for nearly half of the mass loss from the Antarctic Ice Sheet, yet our understanding of this process is limited. The precursor to iceberg calving is large through-cutting fractures, called rifts, that can propagate for decades after they have initiated until they become iceberg detachment boundaries. To improve our knowledge of rift propagation, we monitored the lengths of 78 rifts in 13 Antarctic ice shelves using satellite imagery from the Moderate Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer between 2002 and 2012. This data set allowed us to monitor trends in rift propagation over the past decade and test if variation in trends is controlled by variable environmental forcings. We found that 43 of the 78 rifts were dormant, i.e., propagated less than 500 m over the observational interval. We found only seven rifts propagated continuously throughout the decade. An additional eight rifts propagated for at least 2 years prior to arresting and remaining dormant for the rest of the decade, and 13 rifts exhibited isolated sudden bursts of propagation after 2 or more years of dormancy. Twelve of the fifteen active rifts were initiated at the ice shelf fronts, suggesting that front-initiated rifts are more active than across-flow rifts. Although we did not find a link between the observed variability in rift propagation rate and changes in atmospheric temperature or sea ice concentration correlated with, we did find a statistically significant correlation between the arrival of tsunamis and propagation of front-initiated rifts in eight ice shelves. This suggests a connection between ice shelf rift propagation and mechanical ocean interaction that needs to be better understood.

Fricker, HA, Allison I, Craven M, Hyland G, Ruddell A, Young N, Coleman R, King M, Krebs K, Popov S.  2002.  Redefinition of the Amery Ice Shelf, East Antarctica, grounding zone. Journal of Geophysical Research-Solid Earth. 107   10.1029/2001jb000383   AbstractWebsite

[1] New evidence is presented which shows that the Amery Ice Shelf, East Antarctica, extends similar to240 km upstream of the previously reported position. We combine a digital elevation model of the Amery Ice Shelf created from ERS-1 satellite radar altimetry with measured ice thicknesses and a simple density model in a hydrostatic (buoyancy) calculation to map the extent of the floating ice. This reveals that the ice is floating as far south as 73.2degreesS. The result is confirmed by static GPS measurements collected during three consecutive field campaigns on the Amery Ice Shelf where the vertical component of the GPS shows a clear tidal signal at 72.98degreesS. Other evidence for the grounding zone position comes from an analysis of satellite imagery, mass flux calculations, and ice radar data. The southward extension of the grounding line substantially alters the shape and dimensions of the ocean cavity beneath the ice shelf, which has implications for modeling studies of sub-ice shelf processes, such as basal melting and freezing, ocean circulation, and tides. The new grounding line position will also improve geophysical studies, where the computation of ocean tidal loading corrections is important for postglacial rebound estimates and correction of satellite altimetry measurements within the region.