Publications

Export 6 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Minchew, BM, Gudmundsson GH, Gardner AS, Paolo FS, Fricker HA.  2018.  Modeling the dynamic response of outlet glaciers to observed ice-shelf thinning in the Bellingshausen Sea Sector, West Antarctica. Journal of Glaciology. 64:333-342.   10.1017/jog.2018.24   AbstractWebsite

Satellite observations of gravity anomalies, ice-surface elevation and glacier velocity show significant increases in net grounded-ice-mass loss over the past decade along the Bellingshausen Sea sector (BSS), West Antarctica, in areas where warm (> 1 degrees C) sea water floods the continental shelf. These observations provide compelling but indirect evidence that mass losses are driven primarily by reduced buttressing from the floating ice shelves caused by ocean-driven ice-shelf thinning. Here, we combine recent observations of ice velocity, thickness and thickness changes with an ice flow model to study the instantaneous dynamic response of BSS outlet glaciers to observed ice-shelf thinning, alone. Our model results show that multiple BSS outlet glaciers respond instantaneously to observed ice-shelf thinning, particularly in areas where ice shelves ground at discrete points. Increases in modeled and observed dynamic mass losses, however, account for similar to 5% of the mass loss rates estimated from gravity anomalies and changes in ice-surface elevation, suggesting that variations in surface mass balance may be key to understanding recent BSS mass loss. Our approach isolates the impact of ice-shelf thinning on glacier flow and shows that if ice-shelf thinning continues at or above current rates, total BSS mass loss will increase in the next decade.

2015
Walker, CC, Bassis JN, Fricker HA, Czerwinski RJ.  2015.  Observations of interannual and spatial variability in rift propagation in the Amery Ice Shelf, Antarctica, 2002-14. Journal of Glaciology. 61:243-252.   10.3189/2015JoG14J151   AbstractWebsite

Iceberg calving and basal melting are the two primary mass loss processes from the Antarctic ice sheet, accounting for approximately equal amounts of mass loss. Basal melting under ice shelves has been increasingly well constrained in recent work, but changes in iceberg calving rates remain poorly quantified. Here we examine the processes that precede iceberg calving, and focus on initiation and propagation of ice-shelf rifts. Using satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging Spectroradiometer (MISR), we monitored five active rifts on the Amery Ice Shelf, Antarctica, from 2002 to 2014. We found a strong seasonal component: propagation rates were highest during (austral) summer and nearly zero during winter. We found substantial variability in summer propagation rates, but found no evidence that the variability was correlated with large-scale environmental drivers, such as atmospheric temperature, winds or sea-ice concentration. We did find a positive correlation between large propagation events and the arrival of tsunamis in the region. The variability appears to be related to visible structural boundaries within the ice shelf, e.g. suture zones or crevasse fields. This suggests that a complete understanding of rift propagation and iceberg calving needs to consider local heterogeneities within an ice shelf.

Holland, PR, Brisbourne A, Corr HFJ, McGrath D, Purdon K, Paden J, Fricker HA, Paolo FS, Fleming AH.  2015.  Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning. Cryosphere. 9:1005-1024.   10.5194/tc-9-1005-2015   AbstractWebsite

The catastrophic collapses of Larsen A and B ice shelves on the eastern Antarctic Peninsula have caused their tributary glaciers to accelerate, contributing to sea-level rise and freshening the Antarctic Bottom Water formed nearby. The surface of Larsen C Ice Shelf (LCIS), the largest ice shelf on the peninsula, is lowering. This could be caused by unbalanced ocean melting (ice loss) or enhanced firn melting and compaction (englacial air loss). Using a novel method to analyse eight radar surveys, this study derives separate estimates of ice and air thickness changes during a 15-year period. The uncertainties are considerable, but the primary estimate is that the surveyed lowering (0.066 +/- 0.017 myr(-1)) is caused by both ice loss (0.28 +/- 0.18 myr(-1)) and firn-air loss (0.037 +/- 0.026 myr(-1)). The ice loss is much larger than the air loss, but both contribute approximately equally to the lowering because the ice is floating. The ice loss could be explained by high basal melting and/or ice divergence, and the air loss by low surface accumulation or high surface melting and/or compaction. The primary estimate therefore requires that at least two forcings caused the surveyed lowering. Mechanisms are discussed by which LCIS stability could be compromised in the future. The most rapid pathways to collapse are offered by the ungrounding of LCIS from Bawden Ice Rise or ice-front retreat past a "compressive arch" in strain rates. Recent evidence suggests that either mechanism could pose an imminent risk.

Massom, RA, Giles AB, Warner RC, Fricker HA, Legresy B, Hyland G, Lescarmontier L, Young N.  2015.  External influences on the Mertz Glacier Tongue (East Antarctica) in the decade leading up to its calving in 2010. Journal of Geophysical Research-Earth Surface. 120:490-506.   10.1002/2014jf003223   AbstractWebsite

The Mertz Glacier Tongue (MGT) in East Antarctica lost similar to 55% of its floating length in February 2010, when it calved large tabular iceberg C28 (78x35km). We analyze the behavior of the MGT over the preceding 12years using a variety of satellite data (synthetic aperture radar and Landsat imagery and Ice, Cloud, and land Elevation Satellite laser altimetry). Contact of its northwestern tip with the eastern flank of shoals from 2002/2003 caused eastward deflection of the ice flow by up to similar to 47 degrees. This change contributed to opening of a major rift system similar to 80km to the south, along which iceberg C28 eventually calved. Paradoxically, the seabed contact may have also held the glacier tongue in place to delay calving by similar to 8years. Our study also reveals the effects of other, more localized external influences on the MGT prior to calving. These include an abrupt sideways displacement of the glacier tongue front by at least similar to 145m following an apparent collision with iceberg C08 in early 2002 and calving of numerous small icebergs from the advancing northwestern front due to the chiseling action of small grounded icebergs and seabed contact, resulting in the loss of similar to 36km(2) of ice from 2001 to 2006. The example of the MGT confirms the need for accurate bathymetry in the vicinity of ice shelves and glacier tongues and suggests that the cumulative effect of external factors might be critical to understanding and modeling calving events and ice shelf stability, necessarily on a case-specific basis.

2014
Holt, TO, Glasser NF, Fricker HA, Padman L, Luckman A, King O, Quincey DJ, Siegfried MR.  2014.  The structural and dynamic responses of Stange Ice Shelf to recent environmental change. Antarctic Science. 26:646-660.   10.1017/s095410201400039x   AbstractWebsite

Stange Ice Shelf is the most south-westerly ice shelf on the Antarctic Peninsula, a region where positive trends in atmospheric and oceanic temperatures have been recently documented. In this paper, we use a range of remotely sensed datasets to evaluate the structural and dynamic responses of Stange Ice Shelf to these environmental changes. Ice shelf extent and surface structures were examined at regular intervals from optical and radar satellite imagery between 1973 and 2011. Surface speeds were estimated in 1989, 2004 and 2010 by tracking surface features in successive satellite images. Surface elevation change was estimated using radar altimetry data acquired between 1992 and 2008 by the European Remote Sensing Satellite (ERS) -1, -2 and Envisat. The mean number of surface melt days was estimated using the intensity of backscatter from Envisat's Advanced Synthetic Aperture Radar instrument between 2006 and 2012. These results show significant shear fracturing in the southern portion of the ice shelf linked to enhanced flow speed as a consequence of measured thinning. However, we conclude that, despite the observed changes, Stange Ice Shelf is currently stable.

2013
Walker, CC, Bassis JN, Fricker HA, Czerwinski RJ.  2013.  Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring. Journal of Geophysical Research-Earth Surface. 118:2354-2364.   10.1002/2013jf002742   AbstractWebsite

Iceberg calving from ice shelves accounts for nearly half of the mass loss from the Antarctic Ice Sheet, yet our understanding of this process is limited. The precursor to iceberg calving is large through-cutting fractures, called rifts, that can propagate for decades after they have initiated until they become iceberg detachment boundaries. To improve our knowledge of rift propagation, we monitored the lengths of 78 rifts in 13 Antarctic ice shelves using satellite imagery from the Moderate Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer between 2002 and 2012. This data set allowed us to monitor trends in rift propagation over the past decade and test if variation in trends is controlled by variable environmental forcings. We found that 43 of the 78 rifts were dormant, i.e., propagated less than 500 m over the observational interval. We found only seven rifts propagated continuously throughout the decade. An additional eight rifts propagated for at least 2 years prior to arresting and remaining dormant for the rest of the decade, and 13 rifts exhibited isolated sudden bursts of propagation after 2 or more years of dormancy. Twelve of the fifteen active rifts were initiated at the ice shelf fronts, suggesting that front-initiated rifts are more active than across-flow rifts. Although we did not find a link between the observed variability in rift propagation rate and changes in atmospheric temperature or sea ice concentration correlated with, we did find a statistically significant correlation between the arrival of tsunamis and propagation of front-initiated rifts in eight ice shelves. This suggests a connection between ice shelf rift propagation and mechanical ocean interaction that needs to be better understood.