Publications

Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
T
Tinto, KJ, Padman L, Siddoway CS, Springer SR, Fricker HA, Das I, Tontini FC, Porter DF, Frearson NP, Howard SL, Siegfried MR, Mosbeux C, Becker MK, Bertinato C, Boghosian A, Brady N, Burton BL, Chu W, Cordero SI, Dhakal T, Dong L, Gustafson CD, Keeshin S, Locke C, Lockett A, O'Brien G, Spergel JJ, Starke SE, Tankersley M, Wearing MG, Bell RE.  2019.  Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nature Geoscience. 12:441-+.   10.1038/s41561-019-0370-2   AbstractWebsite

Ocean melting has thinned Antarctica's ice shelves at an increasing rate over the past two decades, leading to loss of grounded ice. The Ross Ice Shelf is currently close to steady state but geological records indicate that it can disintegrate rapidly, which would accelerate grounded ice loss from catchments equivalent to 11.6 m of global sea level rise. Here, we use data from the ROSETTA-Ice airborne survey and ocean simulations to identify the principal threats to Ross Ice Shelf stability. We locate the tectonic boundary between East and West Antarctica from magnetic anomalies and use gravity data to generate a new high-resolution map of sub-ice-shelf bathymetry. The tectonic imprint on the bathymetry constrains sub-ice-shelf ocean circulation, protecting the ice shelf grounding line from moderate changes in global ocean heat content. In contrast, local, seasonal production of warm upper-ocean water near the ice front drives rapid ice shelf melting east of Ross Island, where thinning would lead to faster grounded ice loss from both the East and West Antarctic ice sheets. We confirm high modelled melt rates in this region using ROSETTA-Ice radar data. Our findings highlight the significance of both the tectonic framework and local ocean-atmosphere exchange processes near the ice front in determining the future of the Antarctic Ice Sheet.

Tulaczyk, S, Mikucki JA, Siegfried MR, Priscu JC, Barcheck CG, Beem LH, Behar A, Burnett J, Christner BC, Fisher AT, Fricker HA, Mankoff KD, Powell RD, Rack F, Sampson D, Scherer RP, Schwartz SY, Wissard Sci T.  2014.  WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Annals of Glaciology. 55:51-58.   10.3189/2014AoG65A009   AbstractWebsite

A clean hot-water drill was used to gain access to Subglacial Lake Whillans (SLW) in late January 2013 as part of the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. Over 3 days, we deployed an array of scientific tools through the SLW borehole: a downhole camera, a conductivity-temperature-depth (CTD) probe, a Niskin water sampler, an in situ filtration unit, three different sediment corers, a geothermal probe and a geophysical sensor string. Our observations confirm the existence of a subglacial water reservoir whose presence was previously inferred from satellite altimetry and surface geophysics. Subglacial water is about two orders of magnitude less saline than sea water (0.37-0.41 psu vs 35 psu) and two orders of magnitude more saline than pure drill meltwater (<0.002 psu). It reaches a minimum temperature of -0.55 degrees C, consistent with depression of the freezing point by 7.019 MPa of water pressure. Subglacial water was turbid and remained turbid following filtration through 0.45 mu m filters. The recovered sediment cores, which sampled down to 0.8 m below the lake bottom, contained a macroscopically structureless diamicton with shear strength between 2 and 6 kPa. Our main operational recommendation for future subglacial access through water-filled boreholes is to supply enough heat to the top of the borehole to keep it from freezing.