Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Zhou, ZQ, Xie SP, Zhang GJ, Zhou WY.  2018.  Evaluating AMIP Skill in Simulating Interannual Variability over the Indo-Western Pacific. Journal of Climate. 31:2253-2265.   10.1175/jcli-d-17-0123.1   AbstractWebsite

Local correlation between sea surface temperature (SST) and rainfall is weak or even negative in summer over the Indo-western Pacific warm pool, a fact often taken as indicative of weak ocean feedback on the atmosphere. An Atmospheric Model Intercomparison Project (AMIP) simulation forced by monthly varying SSTs derived from a parallel coupled general circulation model (CGCM) run is used to evaluate AMIP skills in simulating interannual variability of rainfall. Local correlation of rainfall variability between AMIP and CGCMsimulations is used as a direct metric of AMIP skill. This "perfect model'' approach sidesteps the issue of model biases that complicates the traditional skill metric based on the correlation between AMIP and observations. Despite weak local SST-rainfall correlation, the AMIP-CGCM rainfall correlation exceeds a 95% significance level over most of the Indo-western Pacific warm pool, indicating the importance of remote (e.g., El Nino in the equatorial Pacific) rather than local SST forcing. Indeed, the AMIP successfully reproduces large-scale modes of rainfall variability over the Indo-western Pacific warm pool. Compared to the northwest Pacific east of the Philippines, the AMIP-CGCMrainfall correlation is low from the Bay of Bengal through the South China Sea, limited by internal variability of the atmosphere that is damped in CGCM by negative feedback from the ocean. Implications for evaluating AMIP skill in simulating observations are discussed.

2010
Chen, HM, Zhou TJ, Neale RB, Wu XQ, Zhang GJ.  2010.  Performance of the new NCAR CAM3.5 in East Asian summer monsoon simulations: Sensitivity to modifications of the convection scheme. Journal of Climate. 23:3657-3675.   10.1175/2010jcli3022.1   AbstractWebsite

The performance of an interim version of the NCAR Community Atmospheric Model (CAM3.5) in simulating the East Asian summer monsoon (EASM) is assessed by comparing model results against observations and reanalyses. Both the climate mean states and seasonal cycle of major EASM components are evaluated. Special attention is paid to the sensitivity of model performance to changes in the convection scheme. This is done by analyzing four CAM3.5 runs with identical dynamical core and physical packages but different modifications to their convection scheme, that is, the original Zhang-McFarlane (ZM) scheme, Neale et al.'s modification (NZM), Wu et al.'s modification (WZM), and Zhang's modification (ZZM). The results show that CAM3.5 can capture the major climate mean states and seasonal features of the EASM circulation system, including reasonable simulations of the Tibetan high in the upper troposphere and the western Pacific subtropical high (WPSH) in the middle and lower troposphere. The main deficiencies are found in monsoon rainfall and the meridional monsoon cell. The weak meridional land-sea thermal contrasts in the model contribute to the weaker monsoon circulation and to insufficient rainfall in both tropical and subtropical regions of EASM. The seasonal migration of rainfall, as well as the northward jump of the WPSH from late spring to summer, is reasonably simulated, except that the northward jump of the monsoon rain belt still needs improvement. Three runs using modified schemes generally improve the model performance in EASM simulation compared to the control run. The monsoon rainfall distribution and its seasonal variation are sensitive to modifications of the ZM convection scheme, which is most likely due to differences in closure assumptions. NZM, which uses a convective available potential energy (CAPE)-based closure assumption,performs better in tropical regions where the rainfall is closely related to CAPE. However, WZM and ZZM, which use quasi-equilibrium (QE) closure, have more realistic subtropical rainfall in the mei-yu/baiu/changma front region, mainly because the rainfall in the subtropics is more sensitive to the rate of destabilization by the large-scale flow.