Publications

Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W [X] Y Z   [Show ALL]
X
Xie, SC, Zhang MH, Branson M, Cederwall RT, Delgenio AD, Eitzen ZA, Ghan SJ, Iacobellis SF, Johnson KL, Khairoutdinov M, Klein SA, Krueger SK, Lin WY, Lohmann U, Miller MA, Randall DA, Somerville RCJ, Sud YC, Walker GK, Wolf A, Wu XQ, Xu KM, Yio JJ, Zhang G, Zhang JH.  2005.  Simulations of midlatitude frontal clouds by single-column and cloud-resolving models during the Atmospheric Radiation Measurement March 2000 cloud intensive operational period. Journal of Geophysical Research-Atmospheres. 110   10.1029/2004jd005119   AbstractWebsite

[1] This study quantitatively evaluates the overall performance of nine single-column models (SCMs) and four cloud-resolving models (CRMs) in simulating a strong midlatitude frontal cloud system taken from the spring 2000 Cloud Intensive Observational Period at the Atmospheric Radiation Measurement ( ARM) Southern Great Plains site. The evaluation data are an analysis product of constrained variational analysis of the ARM observations and the cloud data collected from the ARM ground active remote sensors (i.e., cloud radar, lidar, and laser ceilometers) and satellite retrievals. Both the selected SCMs and CRMs can typically capture the bulk characteristics of the frontal system and the frontal precipitation. However, there are significant differences in detailed structures of the frontal clouds. Both CRMs and SCMs overestimate high thin cirrus clouds before the main frontal passage. During the passage of a front with strong upward motion, CRMs underestimate middle and low clouds while SCMs overestimate clouds at the levels above 765 hPa. All CRMs and some SCMs also underestimated the middle clouds after the frontal passage. There are also large differences in the model simulations of cloud condensates owing to differences in parameterizations; however, the differences among intercompared models are smaller in the CRMs than the SCMs. In general, the CRM-simulated cloud water and ice are comparable with observations, while most SCMs underestimated cloud water. SCMs show huge biases varying from large overestimates to equally large underestimates of cloud ice. Many of these model biases could be traced to the lack of subgrid-scale dynamical structure in the applied forcing fields and the lack of organized mesoscale hydrometeor advections. Other potential reasons for these model errors are also discussed in the paper.

Xie, SC, Xu KM, Cederwall RT, Bechtold P, Delgenio AD, Klein SA, Cripe DG, Ghan SJ, Gregory D, Iacobellis SF, Krueger SK, Lohmann U, Petch JC, Randall DA, Rotstayn LD, Somerville RCJ, Sud YC, Von Salzen K, Walker GK, Wolf A, Yio JJ, Zhang GJ, Zhang MG.  2002.  Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions. Quarterly Journal of the Royal Meteorological Society. 128:1095-1135.   10.1256/003590002320373229   AbstractWebsite

This study reports the Single-Column Model (SCM) part of the Atmospheric Radiation Measurement (ARM)/the Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) joint SCM and Cloud-Resolving Model (CRM) Case 3 intercomparison study, with a focus on evaluation Of Cumulus parametrizations used in SCMs. Fifteen SCMs are evaluated under summertime midlatitude continental conditions using data collected at the ARM Southern Great Plains site during the summer 1997 Intensive Observing Period. Results from ten CRMs are also used to diagnose problems in the SCMs. It is shown that most SCMs can generally capture well the convective events that were well-developed within the SCM domain, while most of them have difficulties in simulating the occurrence of those convective events that only occurred within a small part of the domain. All models significantly underestimate the surface stratiform precipitation. A third of them produce large errors in surface precipitation and thermodynamic structures. Deficiencies in convective triggering mechanisms are thought to be one of the major reasons. Using a triggering mechanism that is based on the vertical integral of parcel buoyant energy without additional appropriate constraints results in overactive convection, which in turn leads to large systematic warm/dry biases in the troposphere. It is also shown that a non-penetrative convection scheme can underestimate the depth of instability for midlatitude convection, which leads to large systematic cold/moist biases in the troposphere. SCMs agree well quantitatively with CRMs in the updraught mass fluxes, while most models significantly underestimate the downdraught mass fluxes. Neglect of mesoscale updraught and downdraught mass fluxes in the SCMs contributes considerably to the discrepancies between the SCMs and the CRMs. In addition, uncertainties in the diagnosed mass fluxes in the CRMs and deficiencies with cumulus parametrizations are not negligible. Similar results are obtained in the sensitivity tests when different forcing approaches are used. Finally. sensitivity tests from an SCM indicate that its simulations can be greatly improved when its triggering mechanism and closure assumption are improved.