Export 10 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
Leung, K, Velado M, Subramanian A, Zhang GJ, Somerville RCJ, Shen SSP.  2016.  Simulation of high-resolution precipitable water data by a stochastic model with a random trigger. Advances in Data Science and Adaptive Analysis.   10.1142/S2424922X16500066   Abstract

We use a stochastic differential equation (SDE) model with a random precipitation trigger for mass balance to simulate the 20 s temporal resolution column precipitable water vapor (PWV) data during the tropical warm pool international cloud experiment (TWP-ICE) period of January 20 to February 15, 2006 at Darwin, Australia. The trigger is determined by an exponential cumulative distribution function, the time step size in the SDE simulation, and a random precipitation indicator uniformly distributed over [0, 1]. Compared with the observed data, the simulations have similar means, extremes, skewness, kurtosis, and overall shapes of probability distribution, and are temporally well synchronized for increasing and decreasing, but have about 20% lower standard deviation. Based on a 1000-day run, the correlations between the model data and the observations in TWP-ICE period were computed in a moving time window of 25 days and show quasi-periodic variations between (−0.675, 0.697). This shows that the results are robust for the stochastic model simulation of the observed PWV data, whose fractal dimension is 1.9, while the dimension of the simulated data is also about 1.9. This agreement and numerous sensitivity experiments form a test on the feasibility of using an SDE model to simulate precipitation processes in more complex climate models.

Li, LJ, Wang B, Zhang GJ.  2014.  The role of nonconvective condensation processes in response of surface shortwave cloud radiative forcing to El Nino warming. Journal of Climate. 27:6721-6736.   10.1175/jcli-d-13-00632.1   AbstractWebsite

The weak response of surface shortwave cloud radiative forcing (SWCF) to El Nino over the equatorial Pacific remains a common problem in many contemporary climate models. This study shows that two versions of the Grid-Point Atmospheric Model of the Institute of Atmospheric Physics (IAP)/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) (GAMIL) produce distinctly different surface SWCF response to El Nino. The earlier version, GAMIL1, underestimates this response, whereas the latest version, GAMIL2, simulates it well. To understand the causes for the different SWCF responses between the two simulations, the authors analyze the underlying physical mechanisms. Results indicate the enhanced stratiform condensation and evaporation in GAMIL2 play a key role in improving the simulations of multiyear annual mean water vapor (or relative humidity), cloud fraction, and incloud liquid water path (ICLWP) and hence in reducing the biases of SWCF and rainfall responses to El Nino due to all of the improved dynamical (vertical velocity at 500 hPa), cloud amount, and liquid water path (LWP) responses. The largest contribution to the SWCF response improvement in GAMIL2 is from LWP in the Nino-4 region and from low-cloud cover and LWP in the Nino-3 region. Furthermore, as a crucial factor in the low-cloud response, the atmospheric stability change in the lower layers is significantly influenced by the nonconvective heating variation during La Nina.

Li, G, Zhang GJ.  2008.  Understanding biases in shortwave cloud radiative forcing in the national center for atmospheric research community atmosphere model (CAM3) during El Nino. Journal of Geophysical Research-Atmospheres. 113   10.1029/2007jd008963   AbstractWebsite

This study aims to understand the weak response of shortwave cloud radiative forcing (SWCF) to El Nino in the NCAR CAM3. Observations from ERBE and CERES show strong negative SWCF in the central and eastern equatorial Pacific during El Nino. The standard CAM3 simulation at T42 resolution severely underestimates this response, with even wrong sign in the eastern Pacific. However, an experimental simulation at the same resolution, but with a modified convection parameterization scheme, simulates the cloud shortwave response to El Nino well, although the improvement in the eastern Pacific is not as significant as in the western and central Pacific. To unravel the mechanistic differences in SWCF response to El Nino between the two simulations, the authors analyze the cloud amount, cloud liquid water path (LWP), cloud ice water path (IWP), and convective and large-scale precipitation. It is shown that positive LWP anomalies are mainly responsible for the improved SWCF response to El Nino in the experimental simulation. Interaction among deep convection, shallow convection and low-level clouds is explored to explain this result. Negative LWP anomalies, largely due to reduced cloud water content and amount of low clouds during El Nino in the standard CAM3, weaken the SWCF response. Comparison with a higher-resolution simulation of CAM3 at T85 shows that the T85 simulation produces realistic SWCF response through greatly increased cloud water and ice content in the middle and upper troposphere, while reduced low-level cloud water content remains a problem.

Li, LJ, Wang B, Zhang GJ.  2015.  The role of moist processes in shortwave radiative feedback during ENSO in the CMIP5 models. Journal of Climate. 28:9892-9908.   10.1175/jcli-d-15-0276.1   AbstractWebsite

The weak negative shortwave (SW) radiative feedback (sw) during El Nino-Southern Oscillation (ENSO) over the equatorial Pacific is a common problem in the models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). In this study, the causes for the (sw) biases are analyzed using three-dimensional cloud fraction and liquid water path (LWP) provided by the 17 CMIP5 models and the relative roles of convective and stratiform rainfall feedbacks in (sw) are explored. Results show that the underestimate of SW feedback is primarily associated with too negative cloud fraction and LWP feedbacks in the boundary layers, together with insufficient middle and/or high cloud and dynamics feedbacks, in both the CMIP and Atmospheric Model Intercomparsion Project (AMIP) runs, the latter being somewhat better. The underestimations of SW feedbacks are due to both weak negative SW responses to El Nino, especially in the CMIP runs, and strong positive SW responses to La Nina, consistent with their biases in cloud fraction, LWP, and dynamics responses to El Nino and La Nina. The convective rainfall feedback, which is largely reduced owing to the excessive cold tongue in the CMIP runs compared with their AMIP counterparts, contributes more to the difference of SW feedback (mainly under El Nino conditions) between the CMIP and AMIP runs, while the stratiform rainfall plays a more important role in SW feedback during La Nina.

Liang, YS, Wang LN, Zhang GJ, Wu QZ.  2017.  Sensitivity test of parameterizations of subgrid-scale orographic form drag in the NCAR CESM1. Climate Dynamics. 48:3365-3379.   10.1007/s00382-016-3272-7   AbstractWebsite

Turbulent drag caused by subgrid orographic form drag has significant effects on the atmosphere. It is represented through parameterization in large-scale numerical prediction models. An indirect parameterization scheme, the Turbulent Mountain Stress scheme (TMS), is currently used in the National Center for Atmospheric Research Community Earth System Model v1.0.4. In this study we test a direct scheme referred to as BBW04 (Beljaars et al. in Q J R Meteorol Soc 130:1327-1347, 2004., which has been used in several short-term weather forecast models and earth system models. Results indicate that both the indirect and direct schemes increase surface wind stress and improve the model's performance in simulating low-level wind speed over complex orography compared to the simulation without subgrid orographic effect. It is shown that the TMS scheme produces a more intense wind speed adjustment, leading to lower wind speed near the surface. The low-level wind speed by the BBW04 scheme agrees better with the ERA-Interim reanalysis and is more sensitive to complex orography as a direct method. Further, the TMS scheme increases the 2-m temperature and planetary boundary layer height over large areas of tropical and subtropical Northern Hemisphere land.

Lim, KSS, Fan JW, Leung R, Ma PL, Singh B, Zhao C, Zhang Y, Zhang G, Song XL.  2014.  Investigation of aerosol indirect effects using a cumulus microphysics parameterization in a regional climate model. Journal of Geophysical Research-Atmospheres. 119:906-926.   10.1002/2013jd020958   AbstractWebsite

A new Zhang and McFarlane (ZM) cumulus scheme includes a two-moment cloud microphysics parameterization for convective clouds. This allows aerosol effects to be investigated more comprehensively by linking aerosols with microphysical processes in both stratiform clouds that are explicitly resolved and convective clouds that are parameterized in climate models. This new scheme is implemented in the Weather Research and Forecasting model, coupled with the physics and aerosol packages from the Community Atmospheric Model version 5. A case of July 2008 during the East Asian summer monsoon is selected to evaluate the performance of the new ZM and to investigate aerosol effects on monsoon precipitation. The precipitation and radiative fluxes simulated by the new ZM show a better agreement with observations compared to simulations with the original ZM that does not include convective cloud microphysics and aerosol-convective cloud interactions. Detailed analysis suggests that an increase in detrained cloud water and ice mass by the new ZM is responsible for this improvement. Aerosol impacts on cloud properties, precipitation, and radiation are examined by reducing the primary aerosols and anthropogenic emissions to 30% of those in the present (polluted) condition. The simulated surface precipitation is reduced by 9.8% from clean to polluted environment, and the reduction is less significant when microphysics processes are excluded from the cumulus clouds. Cloud fraction is reduced by the increased aerosols due to suppressed convection, except during some heavy precipitation periods when cloud fraction, cloud top height, and rain rate are increased due to enhanced convection.

Liu, YC, Fan JW, Xu KM, Zhang GJ.  2018.  Analysis of cloud-resolving model simulations for scale dependence of convective momentum transport. Journal of the Atmospheric Sciences. 75:2445-2472.   10.1175/jas-d-18-0019.1   AbstractWebsite

We use 3D cloud-resolving model (CRM) simulations of two mesoscale convective systems at midlatitudes and a simple statistical ensemble method to diagnose the scale dependency of convective momentum transport (CMT) and CMT-related properties and evaluate a parameterization scheme for the convection-induced pressure gradient (CIPG) developed by Gregory et al. Gregory et al. relate CIPG to a constant coefficient multiplied by mass flux and vertical mean wind shear. CRM results show that mass fluxes and CMT exhibit strong scale dependency in temporal evolution and vertical structure. The upgradient-downgradient CMT characteristics for updrafts are generally similar between small and large grid spacings, which is consistent with previous understanding, but they can be different for downdrafts across wide-ranging grid spacings. For the small to medium grid spacings (4-64 km), Gregory et al. reproduce some aspects of CIPG scale dependency except for underestimating the variations of CIPG as grid spacing decreases. However, for large grid spacings (128-512 km), Gregory et al. might even less adequately parameterize CIPG because it omits the contribution from either the nonlinear-shear or the buoyancy forcings. Further diagnosis of CRM results suggests that inclusion of nonlinear-shear forcing in Gregory et al. is needed for the large grid spacings. For the small to median grid spacings, a modified Gregory et al. with the three-updraft approach help better capture the variations of CIPG as grid spacing decreases compared to the single updraft approach. Further, the optimal coefficients used in Gregory et al. seem insensitive to grid spacings, but they might be different for updrafts and downdrafts, for different MCS types, and for zonal and meridional components.

Liu, YC, Fan JW, Zhang GJ, Xu KM, Ghan SJ.  2015.  Improving representation of convective transport for scale-aware parameterization: 2. Analysis of cloud-resolving model simulations. Journal of Geophysical Research-Atmospheres. 120:3510-3532.   10.1002/2014jd022145   AbstractWebsite

Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the midlatitude continental and the tropical regions are conducted and evaluated, we examine the scale dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraft eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of midlatitude continental convection. We show that the single-updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as three updrafts can account for the internal variability of updrafts well. Based on the evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales.

Lu, CS, Liu YG, Zhang GJ, Wu XH, Endo S, Cao L, Li YQ, Guo XH.  2016.  Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large-eddy simulation. Journal of the Atmospheric Sciences. 73:761-773.   10.1175/jas-d-15-0050.1   AbstractWebsite

This work examines the relationships of entrainment rate to vertical velocity, buoyancy, and turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large-eddy simulation (LES) model are also examined with the same approach. The analysis shows that a combination of multiple variables can better represent entrainment rate in both the observations and LES than any single-variable fitting. Three commonly used parameterizations are also tested on the individual cloud scale. A new parameterization is thus presented that relates entrainment rate to vertical velocity, buoyancy, and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy, and dissipation rate are also explored.

Lu, CS, Sun C, Liu YG, Zhang GJ, Lin YL, Gao WH, Niu SJ, Yin Y, Qiu YJ, Jin LJ.  2018.  Observational relationship between entrainment rate and environmental relative humidity and implications for convection parameterization. Geophysical Research Letters. 45:13495-13504.   10.1029/2018gl080264   AbstractWebsite

Entrainment rate is a critical but highly uncertain quantity in convective parameterizations; especially, the effects of environmental relative humidity on entrainment rate are controversial, or even opposite, in different studies. Analysis of aircraft observations of cumuli from the Routine AAF (Atmospheric Radiation Measurement [ARM] Aerial Facility) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) and Rain in Cumulus over the Ocean (RICO) field campaigns shows that entrainment rate is positively correlated with relative humidity. Physical analysis shows that higher relative humidity promotes entrainment by reducing buoyancy in the cloud cores and by weakening downdrafts near the cloud cores. The reduced buoyancy in the cloud cores and weakened downdrafts surrounding the cores further reduce updrafts in the cloud cores; the cloud cores with smaller updrafts are more significantly affected by their environment, resulting in larger entrainment rate. The relationship between entrainment rate and relative humidity is consistent with the buoyancy sorting concept widely used in convection parameterizations. The results provide reliable in situ observations to improve parameterizations of entrainment rate. Plain Language Summary Cumulus clouds affect vertical distributions of atmospheric energy and mass and further affect weather and climate. Near cloud edges, environmental air can be entrained into clouds. Entrainment rate describes how fast environmental air is entrained, which affects the growth and dissipation of clouds. However, our understanding of the factors affecting entrainment rate is far from established. Especially, different studies found that the effects of environmental relative humidity on entrainment rate could be opposite. Based on in situ observations of cumulus clouds, it is found that higher relative humidity causes larger entrainment rate. Physical analysis shows that relative humidity affects entrainment rate through its effects on thermodynamic and dynamical structures in and outside cumulus clouds. Mathematical artifacts in the calculation of entrainment rate are ruled out.