Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F [G] H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
G
Guo, XH, Lu CS, Zhao TL, Zhang GJ, Liu YG.  2015.  An observational study of entrainment rate in deep convection. Atmosphere. 6:1362-1376.   10.3390/atmos6091362   AbstractWebsite

This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors' knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal, gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. In addition, entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.

Guo, XH, Lu CS, Zhao TL, Liu YG, Zhang GJ, Luo S.  2018.  Observational study of the relationship between entrainment rate and relative dispersion in deep convective clouds. Atmospheric Research. 199:186-192.   10.1016/j.atmosres.2017.09.013   AbstractWebsite

This study investigates the influence of entrainment rate (lambda) on relative dispersion (epsilon) of cloud droplet size distributions (CDSD) in the 99 growing precipitating deep convective clouds during TOGA-COARE. The results show that entrainment suppresses epsilon, which is opposite to the traditional understanding that entrainment-mixing broadens CDSD. To examine how the relationship between epsilon and lambda is affected by droplets with different sizes, CDSDs are divided into three portions with droplet radius < 3.75 mu m (N-1), radius in the range of 3.75-12.75 mu m (N-2) and 12.75-23.25 mu m (N-3), respectively. The results indicate that although the droplet concentration at different sizes generally decrease simultaneously as lambda increases, the variation of standard deviation (sigma) depends mainly on N-3, while the mean radius (r(m)) decreases with decreasing N-3, but increases with decreasing N-1. So the influence of entrainment on CDSD causes a more dramatical decrease in a than that in r(m), and further leads to the decrease of a as entrainment enhances. In addition, a conceptual model of CDSD evolution during entrainment mixing processes is developed to illustrate the possible scenarios entailing different relationships between a and lambda. The number concentration of small droplets and the degree of evaporation of small droplets are found to be key factors that shift the sign (i.e., positive or negative) of the epsilon-lambda relationship.

Gutzler, DS, Long LN, Schemm J, Roy SB, Bosilovich M, Collier JC, Kanamitsu M, Kelly P, Lawrence D, Lee MI, Sanchez RL, Mapes B, Mo K, Nunes A, Ritchie EA, Roads J, Schubert S, Wei H, Zhang GJ.  2009.  Simulations of the 2004 North American Monsoon: NAMAP2. Journal of Climate. 22:6716-6740.   10.1175/2009jcli3138.1   AbstractWebsite

The second phase of the North American Monsoon Experiment (NAME) Model Assessment Project (NAMAP2) was carried out to provide a coordinated set of simulations from global and regional models of the 2004 warm season across the North American monsoon domain. This project follows an earlier assessment, called NAMAP, that preceded the 2004 field season of the North American Monsoon Experiment. Six global and four regional models are all forced with prescribed, time-varying ocean surface temperatures. Metrics for model simulation of warm season precipitation processes developed in NAMAP are examined that pertain to the seasonal progression and diurnal cycle of precipitation, monsoon onset, surface turbulent fluxes, and simulation of the low-level jet circulation over the Gulf of California. Assessment of the metrics is shown to be limited by continuing uncertainties in spatially averaged observations, demonstrating that modeling and observational analysis capabilities need to be developed concurrently. Simulations of the core subregion (CORE) of monsoonal precipitation in global models have improved since NAMAP, despite the lack of a proper low-level jet circulation in these simulations. Some regional models run at higher resolution still exhibit the tendency observed in NAMAP to overestimate precipitation in the CORE subregion; this is shown to involve both convective and resolved components of the total precipitation. The variability of precipitation in the Arizona/New Mexico (AZNM) subregion is simulated much better by the regional models compared with the global models, illustrating the importance of transient circulation anomalies (prescribed as lateral boundary conditions) for simulating precipitation in the northern part of the monsoon domain. This suggests that seasonal predictability derivable from lower boundary conditions may be limited in the AZNM subregion.