Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V [W] X Y Z   [Show ALL]
Ramanathan, V, Ramana MV, Roberts G, Kim D, Corrigan C, Chung C, Winker D.  2007.  Warming trends in Asia amplified by brown cloud solar absorption. Nature. 448:575-578.   10.1038/nature06019   AbstractWebsite

Atmospheric brown clouds are mostly the result of biomass burning and fossil fuel consumption(1). They consist of a mixture of light-absorbing and light-scattering aerosols(1) and therefore contribute to atmospheric solar heating and surface cooling. The sum of the two climate forcing terms-the net aerosol forcing effect is thought to be negative and may have masked as much as half of the global warming attributed to the recent rapid rise in greenhouse gases(2). There is, however, at least a fourfold uncertainty(2) in the aerosol forcing effect. Atmospheric solar heating is a significant source of the uncertainty, because current estimates are largely derived from model studies. Here we use three lightweight unmanned aerial vehicles that were vertically stacked between 0.5 and 3 km over the polluted Indian Ocean. These unmanned aerial vehicles deployed miniaturized instruments measuring aerosol concentrations, soot amount and solar fluxes. During 18 flight missions the three unmanned aerial vehicles were flown with a horizontal separation of tens of metres or less and a temporal separation of less than ten seconds, which made it possible to measure the atmospheric solar heating rates directly. We found that atmospheric brown clouds enhanced lower atmospheric solar heating by about 50 per cent. Our general circulation model simulations, which take into account the recently observed widespread occurrence of vertically extended atmospheric brown clouds over the Indian Ocean and Asia(3), suggest that atmospheric brown clouds contribute as much as the recent increase in anthropogenic greenhouse gases to regional lower atmospheric warming trends. We propose that the combined warming trend of 0.25 K per decade may be sufficient to account for the observed retreat of the Himalayan glaciers(4-6).

Graham, B, Mayol-Bracero OL, Guyon P, Roberts GC, Decesari S, Facchini MC, Artaxo P, Maenhaut W, Koll P, Andreae MO.  2002.  Water-soluble organic compounds in biomass burning aerosols over Amazonia - 1. Characterization by NMR and GC-MS. Journal of Geophysical Research-Atmospheres. 107   10.1029/2001jd000336   AbstractWebsite

[1] As part of the European contribution to the Large-Scale Atmosphere-Biosphere Experiment in Amazonia (LBA-EUSTACH), aerosols were sampled at representative pasture and primary rainforest sites in Rondonia, Brazil, during the 1999 "burning season" and dry-to-wet season transition (September-October). Water-soluble organic compounds (WSOCs) within the samples were characterized using a combination of H-1 Nuclear Magnetic Resonance (NMR) spectroscopy for chemical functional group analysis, and Gas Chromatography-Mass Spectrometry (GC-MS) for identification and quantification of individual low-molecular-weight compounds. The H-1 NMR analysis indicates that WSOCs are predominantly aliphatic or oxygenated aliphatic compounds (alcohols, carboxylic acids, etc.), with a minor content of aromatic rings carrying carboxylic and phenolic groups. Levoglucosan (1,6-anhydro-beta-D-glucose), a well-known cellulose combustion product, was the most abundant individual compound identified by GC-MS (0.04-6.90 mug m(-3)), accounting for 1-6% of the total carbon (TC) and 2-8% of the water-soluble organic carbon (WSOC). Other anhydrosugars, produced by hemicellulose breakdown, were detected in much smaller amounts, in addition to series of acids, hydroxyacids, oxoacids, and polyalcohols (altogether 2-5% of TC, 3-6% of WSOC). Most correlated well with organic carbon, black carbon, and potassium, indicating biomass burning to be the major source. A series of sugar alcohols (mannitol, arabitol, erythritol) and sugars (glucose, fructose, mannose, galactose, sucrose, trehalose) were identified as part of the natural background aerosol and are probably derived from airborne microbes and other biogenic material. The bulk of the WSOCs (86-91% WSOC) eluded analysis by GC-MS and may be predominantly high-molecular weight in nature.

Mayol-Bracero, OL, Guyon P, Graham B, Roberts G, Andreae MO, Decesari S, Facchini MC, Fuzzi S, Artaxo P.  2002.  Water-soluble organic compounds in biomass burning aerosols over Amazonia - 2. Apportionment of the chemical composition and importance of the polyacidic fraction. Journal of Geophysical Research-Atmospheres. 107   10.1029/2001jd000522   AbstractWebsite

Chemical characterization was performed on carbonaceous aerosols from Rondonia in the Brazilian Amazon region as part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). The sampling period (October 1999) included the peak of the burning season as well as the dry-to-wet season transition. Characterization of the carbonaceous material was performed by using a thermal combustion method. This enabled determination of aerosol total carbon (TC), black carbon (BC), and organic carbon (OC). A significant fraction of the BC material (on average about 50%) seemed to be highly refractory organic material soluble in water. A more detailed analysis of the water-soluble organic carbon (WSOC) fraction of the TC was undertaken, involving measurements of WSOC content, high-performance liquid chromatography (HPLC) separation (with UV detection) of the water-soluble components, and characterization of individual components by gas chromatography/mass spectrometry (GC/MS). The WSOC fraction accounted for 45-75% of the OC. This high WSOC fraction suggests an aerosol derived mainly from smoldering combustion. Using GC/MS, many different compounds, containing hydroxy, carboxylate, and carbonyl groups, were detected. The fraction of the WSOC identified by GC/MS was about 10%. Three classes of compounds were separated by HPLC/UV: neutral compounds (N), monocarboxylic and dicarboxylic acids (MDA), and polycarboxylic acids (PA). The sum of these three groups accounted for about 70% of the WSOC, with MDA and PA being most abundant (about 50%). Good correlations (r(2) between 0.84 and 0.99) of BCwater (BC after water extraction) and levoglucosan (both indicators of biomass combustion) with the water-soluble species (i.e., WSOC, N, MDA, and PA), and their increase in concentrations during the burning period provided strong evidence that biomass burning is a major source of the WSOC. Particularly interesting is that PA and therefore, probably, humic-like substances (due to their polyacidic nature) are generated in significant amounts during biomass burning. These substances, due to their water solubility and surface tension-lowering effects, may play an important role in determining the overall cloud condensation nuclei activity of biomass burning aerosols and, consequently, could be important in cloud processes and climate forcing.