Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M [N] O P Q R S T U V W X Y Z   [Show ALL]
Crumeyrolle, S, Manninen HE, Sellegri K, Roberts G, Gomes L, Kulmala M, Weigel R, Laj P, Schwarzenboeck A.  2010.  New particle formation events measured on board the ATR-42 aircraft during the EUCAARI campaign. Atmospheric Chemistry and Physics. 10:6721-6735.   10.5194/acp-10-6721-2010   AbstractWebsite

Aerosol properties were studied during an intensive airborne measurement campaign that took place at Rotterdam in Netherlands in May 2008 within the framework of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). The objective of this study is to illustrate seven events of new particle formation (NPF) observed with two Condensation Particle Counters (CPCs) operated on board the ATR-42 research aircraft in airsectors around Rotterdam, and to provide information on the spatial extent of the new particle formation phenomenon based on 1-s resolution measurements of ultra-fine particle (in the size range 3-10 nm diameter, denoted N(3-10) hereafter) concentrations. The results show that particle production occurred under the influence of different air mass origins, at different day times and over the North Sea as well as over the continent. The number concentration of freshly nucleated particles (N(3-10)) varied between 5000 and 100 000 cm(-3) within the boundary layer (BL). Furthermore the vertical extension for all nucleation events observed on the ATR-42 never exceeded the upper limit of the BL. The horizontal extent of N(3-10) could not be delimited due to inflexible flight plans which could not be modified to accommodate real-time results. However, the NPF events were observed over geographically large areas; typically the horizontal extension was about 100 km and larger.

Roberts, G, Mauger G, Hadley O, Ramanathan V.  2006.  North American and Asian aerosols over the eastern Pacific Ocean and their role in regulating cloud condensation nuclei. Journal of Geophysical Research-Atmospheres. 111   10.1029/2005jd006661   AbstractWebsite

[ 1] Measurements of aerosol and cloud properties in the Eastern Pacific Ocean were taken during an airborne experiment on the University of Wyoming's King Air during April 2004 as part of the Cloud Indirect Forcing Experiment (CIFEX). We observed a wide variety of aerosols, including those of long-range transport from Asia, clean marine boundary layer, and North American emissions. These aerosols, classified by their size distribution and history, were found in stratified layers between 500 to 7500 m above sea level and thicknesses from 100 to 3000 m. A comparison of the aerosol size distributions to measurements of cloud condensation nuclei (CCN) provides insight to the CCN activity of the different aerosol types. The overall ratio of measured to predicted CCN concentration (NCCN) is 0.56 +/- 0.41 with a relationship of N-CCN,N- measured = N-CCN, predicted(0.846 +/- 0.002) for 23 research flights and 1884 comparisons. Such a relationship does not accurately describe a CCN closure; however, it is consistent with our measurements that high CCN concentrations are more influenced by anthropogenic sources, which are less CCN active. While other CCN closures have obtained results closer to the expected 1: 1 relationship, the different aerosol types ( and presumably differences in aerosol chemistry) are responsible for the discrepancy. The measured N-CCN at 0.3% supersaturation (S-c) ranged from 20 cm(-3) (pristine) to 350 cm(-3) ( anthropogenic) with an average of 106 +/- 54 cm(-3) over the experiment. The inferred supersaturation in the clouds sampled during this experiment is similar to 0.3%. CCN concentrations of cloud-processed aerosol were well predicted using an ammonium sulfate approximation for S-c <= 0.4%. Predicted N-CCN for other aerosol types (i.e., Asian and North American aerosols) were high compared to measured values indicating a less CCN active aerosol. This study highlights the importance of chemical effects on CCN measurements and introduces a CCN activation index as a method of classifying the efficiency of an aerosol to serve as CCN relative to an ammonium sulfate particle. This index ranged from close to unity for cloud processed aerosols to as low as 0.31 for aged aerosols transported from Asia. We also compare the performance of two CCN instruments ( static thermal diffusion chamber and streamwise continuous flow chamber) on a 45 minute level leg where we observe an aged layer and a nucleation event. More than 50% of the aged aerosol served as CCN at 0.2% S-c, primarily owing to their large size, while CCN concentrations during the nucleation event were close to 0 cm(-3). CCN concentrations from both instruments agreed within instrument errors; however, the continuous flow chamber effectively captured the rapid transition in aerosol properties.